【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题三方案及Python实现

简介: 第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于问题三“本地旅游图谱构建与分析”,介绍了基于OTA和UGC数据的旅游产品关联分析方法,使用支持度、置信度、提升度来计算关联度得分,并进行了结果可视化,同时指出了方案的改进方向。

1.png

相关链接

(1)问题一方案及实现博客介绍

(2)问题二方案及实现博客介绍

(3)问题三方案及实现博客介绍

代码下载

https://github.com/BetterBench/BetterBench-Shop

1 题目

完整的题目,请看第一篇文章

【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现

问题三:本地旅游图谱构建与分析

依据提供的 OTA、 UGC 数据,对问题 2 中提取出的旅游产品进行关联分析,找出以景区、酒店、餐饮等为核心的强关联模式,结果以表 的形式保存为文件“result3.csv”。在此基础上构建本地旅游图谱并选择合适方法进行可视化分析。鼓励参赛队挖掘旅游产品间隐含的关联模式并进行解释

2 思路方案

以支持度、置信度、提升度加权求和作为关联度得分

  • 其中,I表示总事务集。num()表示求事务集里特定项集出现的次数;
  • 比如,num(I)表示总事务集的个数;
  • num(X∪Y)表示含有{X,Y}的事务集的个数(个数也叫次数)。
  • 1.支持度(Support)
    • 支持度表示项集{X,Y}在总项集里出现的概率。公式为:
    • S u p p o r t ( X → Y ) = P ( X , Y ) / P ( I ) = P ( X ∪ Y ) / P ( I ) = n u m ( X U Y ) / n u m ( I ) Support(X→Y) = P(X,Y) / P(I) = P(X∪Y) / P(I) = num(XUY) / num(I) Support(X→Y)\=P(X,Y)/P(I)\=P(X∪Y)/P(I)\=num(XUY)/num(I)
  • 2.置信度 (Confidence)
    • 置信度表示在先决条件X发生的情况下,由关联规则”X→Y“推出Y的概率。即在含有X的项集中,含有Y的可能性,公式为:
    • C o n f i d e n c e ( X → Y ) = P ( Y ∣ X ) = P ( X , Y ) / P ( X ) = P ( X U Y ) / P ( X ) Confidence(X→Y) = P(Y|X) = P(X,Y) / P(X) = P(XUY) / P(X) Confidence(X→Y)\=P(Y∣X)\=P(X,Y)/P(X)\=P(XUY)/P(X)
  • 3.提升度(Lift)
    • 提升度表示含有X的条件下,同时含有Y的概率,与不含X的条件下却含Y的概率之比。
    • L i f t ( X → Y ) = P ( Y ∣ X ) / P ( Y ) Lift(X→Y) = P(Y|X) / P(Y) Lift(X→Y)\=P(Y∣X)/P(Y)

改进点:

我认为我仅仅提供的是一个Baseline,从数据到表,再到可视化的一个过程,仅仅是一个参考答案,并不是最终答案

改进的方向有很多,比如问题二中可以根据NER去提取旅游产品,问题三中可以采用krl(知识表示学习)、erl(实体识别与链接)、ere(实体关系抽取)、ede(实体检测与抽取)、ksq(知识存储与查询)、kr(知识推理)等知识体系去改进。让方案更高级,改进的才能增加获奖的可能

3 Python实现

import pandas as pd
import numpy as np
from collections import defaultdict
# 此csv文件来自第二问的代码,请下载第二问的代码和数据
data = pd.read_csv('./data/问题二所有数据汇总.csv')
AI 代码解读

3.1 计算支持度作为相关度

3.1 给样本集的旅游产品one-hot编码

key为旅游产品名称,value代表列

{'周黑鸭(东汇城店)': 0, '茂名文华酒店': 1, '旅游度假区': 2, '古郡水城': 3, '南三岛': 4, '红树林公园': 5, '信宜酒店': 6, '菠斯蒂蛋糕': 7}
AI 代码解读

则每个句子只要出现旅游产品,相应列则就编码为1。

    [[0 1 0 0 0 1 0 1]
     [0 1 0 1 1 0 0 0]
     [0 0 0 0 1 0 0 1]
     [0 0 1 0 1 1 1 0]
     [1 1 0 0 0 1 0 1]
     [0 1 1 0 0 1 0 1]]
AI 代码解读
# 给每个样本中的产品onehot编码
# 总共有438个产品,则初始化有438列的0,如果一个样本中存在“丰年面包店“和”功夫鸡排”两个产品,则438列中,这两列对应是1。
# 返回one-hot数组和产品字典编号字典
def create_one_hot(data):
    """将实体数据转换成:0,1数据类型,类似于词袋模型
    """
    。。。略
    请下载完整代码
    return out_array, feature_dict
AI 代码解读

3.2 计算支持度、置信度、提升度

# 计算支持度作为关联度,
def calculate(data_vector):
    """计算支持度,置信度,提升度
    """
    print('=' * 50)
    print('Calculating...')

    n_samples, n_features = data_vector.shape
    print('特征数: ', n_features)
    print('样本数: ', n_samples)

    support_dict = defaultdict(float)
    confidence_dict = defaultdict(float)
    lift_dict = defaultdict(float)

    # together_appear: {(0, 1): 3, (0, 3): 2, (0, 4): 1, (1, 0): 3, (1, 3): 2,...}
    # together_appear: 元组里的元素是特征的序号,后面的数字,是这两个特征同时出现的总次数
    together_appear_dict = defaultdict(int)

    # feature_num_dict:{0: 3, 1: 4, 2: 3,...}
    # feature_num_dict: key是特征的序号,后面的数字是这个特征出现的总次数
    feature_num_dict = defaultdict(int)

       。。。略
    请下载完整代码

    return support_dict, confidence_dict, lift_dict
AI 代码解读

3.3 将编码转为字符串


def convert_to_sample(feature_dict, s, c, l):
    """把0,1,2,3,... 等字母代表的feature,转换成实体
    """
    print('=' * 50)
    print('Start converting to the required sample format...')
    # print(feature_dict)
    feature_mirror_dict = dict()
    for k, v in feature_dict.items():
        feature_mirror_dict[v] = k
    # print(feature_mirror_dict)

    。。。略
    请下载完整代码
AI 代码解读
data_array, feature_di = create_one_hot(data)
support_di, confidence_di, lift_di = calculate(data_array)

support = sorted(support_di.items(), key=lambda x: x[1], reverse=True)
confidence = sorted(confidence_di.items(),
                    key=lambda x: x[1], reverse=True)
lift = sorted(lift_di.items(), key=lambda x: x[1], reverse=True)

support_li, confidence_li, lift_li = convert_to_sample(feature_di, support, confidence, lift)
AI 代码解读

2.png

3.4 计算关联度

support_df = pd.DataFrame(support_li,columns=['产品名称1','产品名称2','支持度'])
confidence_df = pd.DataFrame(confidence_li, columns=['产品名称1', '产品名称2', '置信度'])
lift_df = pd.DataFrame(lift_li, columns=['产品名称1', '产品名称2', '提升度'])

。。。略
请下载完整代码
del submit_3['支持度']
submit_3
AI 代码解读

3.png

3.5 生成result3.csv

map_dict ={}
for i,d in enumerate(feature_di):
    map_dict[d] = 'ID'+str(feature_di[d]+1)
map_dict
AI 代码解读

4.png

# 将名称转为ID
submit_3['产品1'] = submit_3['产品名称1'].map(map_dict)
submit_3['产品2'] = submit_3['产品名称2'].map(map_dict)
result3 = submit_3[['产品1', '产品2','关联度']]
result3
AI 代码解读

5.png

# 读取问题二的产品类型表,需要生成表3的关联类型
# # 此csv文件来自第二问的代码,请下载第二问的代码和数据https://mianbaoduo.com/o/bread/YpmYm5xy
result2_2 = pd.read_csv('./data/result2-2.csv')
p_k = result2_2['产品ID']
p_v = result2_2['产品类型']
p_type_dict  = dict(zip(p_k,p_v))
p_type_dict
AI 代码解读

6.png

result3['关联类型'] = p_type
result3.to_csv('./data/result3.csv',index=False)
AI 代码解读

7.png

3.6 可视化关联

import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd

from spacy import displacy
G = nx.from_pandas_edgelist(submit_3[submit_3['关联度'] > 0], "产品名称1", "产品名称2",
                            edge_attr=True, create_using=nx.MultiDiGraph())

plt.figure(figsize=(12, 12))
pos = nx.spring_layout(G, k=0.5)  # k regulates the distance between nodes
nx.draw(G, with_labels=True, node_color='skyblue',
        node_size=1500, edge_cmap=plt.cm.Blues, pos=pos)
AI 代码解读

8.png

目录
打赏
0
1
1
0
153
分享
相关文章
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
130 35
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
138 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
随着数据采集需求的增加,传统爬虫工具如Selenium、Jsoup等因语言割裂、JS渲染困难及代理兼容性差等问题,难以满足现代网站抓取需求。微软推出的Playwright框架,凭借多语言支持(Python/Java/.NET/Node.js)、统一API接口和优异的JS兼容性,解决了跨语言协作、动态页面解析和身份伪装等痛点。其性能优于Selenium与Puppeteer,在学术数据库(如Scopus)抓取中表现出色。行业应用广泛,涵盖高校科研、大型数据公司及AI初创团队,助力构建高效稳定的爬虫系统。
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
Webview+Python:用HTML打造跨平台桌面应用的创新方案
本文系统介绍了使用PyWebView库结合HTML/CSS/JavaScript开发跨平台桌面应用的方法。相比传统方案(如PyQt、Tkinter),PyWebView具备开发效率高、界面美观、资源占用低等优势。文章从技术原理、环境搭建、核心功能实现到性能优化与实战案例全面展开,涵盖窗口管理、双向通信、系统集成等功能,并通过“智能文件管理器”案例展示实际应用。适合希望快速构建跨平台桌面应用的Python开发者参考学习。
61 1
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
546 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
289 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
151 37
Python时间序列分析工具Aeon使用指南
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
161 16
Python时间序列分析:使用TSFresh进行自动化特征提取
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。