基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。

1.程序功能描述
通过和声搜索算法(Harmony Search,HS)实现机器设备工作时间调度,使得多个机器进行并行工作,使得最终完成任务的时间达到最小。仿真结果输出工作调度甘特图以及和声搜索算法的适应度值收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

3.核心程序

```% 对于每一次迭代
for it = 1:Iteration
% 初始化新的和声数组
X_HW = repmat(HW_struct, Num_HM, 1);
% 创建新的和声
for k = 1:Num_HM
% 创建新的和声位置
X_HW(k).Position = unifrnd(Xmin, Xmax, VarSize);
for j = 1:Xnum
if rand <= CR_HM
% 如果随机数小于HMCR
i = randi([1 Size_HM]);% 使用和声记忆
X_HW(k).Position(j) = Harmony(i).Position(j);
end
% 音高调整
if rand <= PAR_HM% 如果随机数小于PAR
DELTA = FW*randn(); % 高斯分布
X_HW(k).Position(j) = X_HW(k).Position(j)+DELTA;
end
end
% 应用变量限制
X_HW(k).Position = max(X_HW(k).Position, Xmin);
X_HW(k).Position = min(X_HW(k).Position, Xmax);
% 评估
[X_HW(k).Cost X_HW(k).Sol] = fits(X_HW(k).Position);
end
% 合并和声记忆和新的和声
Harmony = [Harmony
X_HW];
% 对和声记忆进行排序
[~, II] = sort([Harmony.Cost]);
Harmony = Harmony(II);
% 截断多余的和声
Harmony = Harmony(1:Size_HM);
% 更新找到的最佳解
BestX = Harmony(1);
% 存储找到的最佳代价值
BestY(it) = BestX.Cost;

figure(1);
func_draw(BestX.Sol,JSPm);
end

figure;
plot(1:5:Iteration,BestY(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('迭代次数');
ylabel('适应度值');
0007

```

4.本算法原理
随着工业4.0时代的到来,机器设备的工作调度问题变得越来越重要。合理的调度方案能够提高设备利用率,降低成本,提升企业效益。然而,由于设备数量、任务数量以及约束条件的复杂性,求解最优调度方案成为了一个NP难问题。为此,本文提出使用和声搜索算法求解该问题。

4.1、和声搜索算法
和声搜索算法是一种启发式优化算法,模拟了音乐演奏中和声调整的过程。算法将问题的解看作是和声,通过不断地调整和声中的音符(变量),来达到优化目标函数的目的。算法主要包括以下几个步骤:

1.初始化和声库:随机生成一组初始解,构成初始和声库。

cc1054b58e39c6786714a355adceb809_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.生成新和声:根据某种策略(如随机选择、记忆考虑等)从和声库中选择一个或多个和声,对其进行微调,生成新的和声。

6728f74530d0037da257cbf1b2743c08_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.更新和声库:如果新和声优于和声库中的最差和声,则替换之,否则保留原和声库。
95d1d8ab37aa9b1b10fb6c88bf72c2ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.判断是否达到终止条件:如果达到预设的迭代次数或解的优度达到预设阈值,则算法终止,否则返回步骤2。

主要涉及到的参数如下所示:
和声库大小(HMS):表示和声库中和声的数量;
记忆考虑率(HMCR):表示从和声库中选择和声的概率;
音调微调率(PAR):表示对新和声进行微调的概率;
音调微调带宽(BW):表示微调的幅度。

4.2、基于HS的机器设备工作最优调度方案求解
在求解机器设备工作最优调度方案时,我们首先需要定义问题的编码方式、目标函数以及约束条件。接着,根据HS算法的原理,设计合适的和声表示、生成策略、更新策略以及终止条件。具体流程如下:

编码方式:每个和声代表一个调度方案,其中的音符对应任务的调度顺序、设备的分配等。
目标函数:根据调度方案计算总成本(如时间、能耗等),作为目标函数。我们的目标是最小化该函数。
约束条件:包括设备的工作时间、任务的时间限制等。不满足约束条件的和声将被视为无效。
和声生成策略:结合设备的工作特性和任务需求,设计合适的策略从已有和声中生成新的和声。例如,可以选择部分任务进行顺序调整,或者重新分配某个任务到不同的设备等。
和声更新策略:当新生成的和声满足约束条件且优于库中最差和声时,用其替换库中最差和声。同时,为了保持解的多样性,也可以引入一定的随机性。
终止条件:设定最大迭代次数或者目标函数值改进小于某个阈值作为终止条件。

目录
打赏
0
2
2
0
206
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
78 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
31 18
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
基于ACO蚁群优化的城市最佳出行路径规划matlab仿真
本程序基于蚁群优化(ACO)算法,使用MATLAB2022A进行城市最佳出行路径规划仿真。用户可调整城市数量,输出路径规划结果及ACO收敛曲线。核心代码实现最短路径更新、信息素强化与全局最优路径绘制。ACO模拟蚂蚁行为,通过信息素机制迭代优化路径,适用于不同规模的城市节点,展示从局部探索到全局最优的智能搜索过程。程序运行结果展示了点数较少、中等和较多时的路径规划效果,无水印。
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
152 68
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。