端侧设备AI代理优化框架问世,领域内准确率可达97%

简介: 【7月更文挑战第30天】新框架Octo-planner提升端侧AI代理效率与准确性至97%。此框架由Nexa AI等机构合作研发,采用"Planner-Action"模式,将AI代理任务划分为规划与执行两部分,利用"Octopus"及"Phi-3 Mini"模型分别处理。通过fine-tuning技术及GPT-4辅助,实现在资源受限设备上的高性能。更多细节见论文: https://arxiv.org/pdf/2406.18082

最近,一篇名为"Octo-planner: On-device Language Model for Planner-Action Agents"的论文引起了广泛关注。这篇论文由来自Nexa AI、Stanford、MIT和IBM Watson AI Lab的研究人员共同撰写,提出了一种名为"Octo-planner"的新型AI代理优化框架。该框架旨在提高端侧设备(如智能手机)上AI代理的效率和准确性。

AI代理在各个领域都发挥着重要作用,从智能助理到自主机器人,它们能够根据用户的需求和环境的变化做出决策并执行相应的操作。然而,传统的AI代理通常需要在云端进行大量的计算和推理,这会导致高延迟和高能耗,限制了它们在资源受限的端侧设备上的应用。

为了解决这个问题,研究人员提出了一种名为"Planner-Action"的框架,该框架将AI代理的规划和执行过程分为两个独立的组件:规划代理(Planner)和执行代理(Action)。规划代理负责根据用户的查询生成一系列子任务,而执行代理则负责执行这些子任务。

在论文中,研究人员详细介绍了Octo-planner的实现细节。Octo-planner使用了一个名为"Octopus"的模型作为执行代理,该模型专门设计用于在端侧设备上执行函数调用。而规划代理则使用了一个名为"Phi-3 Mini"的模型,该模型经过了专门的训练,可以在资源受限的设备上高效地运行。

为了提高规划代理的准确性,研究人员采用了一种名为"fine-tuning"的技术,该技术通过在特定任务上对模型进行微调来提高其性能。在论文中,研究人员使用了一个名为"GPT-4"的大型语言模型来生成和验证规划数据,然后使用这些数据对Phi-3 Mini模型进行微调。

实验结果表明,Octo-planner在领域内的准确率可以达到97%,这表明该框架在提高端侧设备上AI代理的效率和准确性方面取得了显著的成果。此外,研究人员还提出了一种名为"multi-LoRA"的训练方法,该方法可以合并多个在特定功能子集上训练的LoRA模型的权重,从而提高模型在处理复杂多域查询时的灵活性和准确性。

然而,Octo-planner也存在一些限制和挑战。首先,虽然Octo-planner在特定领域的准确率很高,但在处理更复杂的任务或不熟悉的领域时,其性能可能会受到影响。其次,Octo-planner的规划代理需要在每次执行任务之前生成完整的计划,这可能无法适应需要实时决策或动态规划的场景。

此外,Octo-planner的实现也需要考虑资源受限设备上的计算和存储限制。虽然研究人员已经通过使用轻量级的模型和优化技术来减少这些限制的影响,但仍然需要进一步的研究来提高Octo-planner在实际应用中的可行性和鲁棒性。

Paper:https://arxiv.org/pdf/2406.18082

目录
相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
DiffSensei 是一个由北京大学、上海AI实验室及南洋理工大学共同推出的AI漫画生成框架,能够生成可控的黑白漫画面板。该框架整合了基于扩散的图像生成器和多模态大型语言模型(MLLM),支持多角色控制和精确布局控制,适用于漫画创作、个性化内容生成等多个领域。
70 18
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
|
5天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
40 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
10天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
93 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
11天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
45 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
11天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
74 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
13天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
55 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
5天前
|
机器学习/深度学习 人工智能 算法
AI框架的赢者法则:生态繁荣的昇思MindSpore,成为大模型时代的新选择
2024年被视为大模型应用的元年。昇思MindSpore AI框架凭借其强大的开源社区和技术创新,在全球范围内迅速崛起。截至2024年11月,该框架的下载量已超过1100万次,覆盖130多个国家和地区的2400多个城市,拥有3.7万名贡献者。昇思MindSpore不仅在人才培养和社区治理方面表现出色,还在大模型的开发、训练和应用中发挥了关键作用,支持了50多个主流大模型,覆盖15个行业。随着其市场份额预计达到30%,昇思MindSpore正逐步成为行业共识,推动大模型在各领域的广泛应用。
33 12
|
4天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
16 6
|
3天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
22 0
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
56 10