GraphRAG+Ollama,构建本地精准全局问答系统!

简介: RAG 是目前大语言模型相关最知名的工具之一,从外部知识库中检索事实,以便为大型语言模型 (LLM) 提供最准确、最新的信息。

引言

RAG 是目前大语言模型相关最知名的工具之一,从外部知识库中检索事实,以便为大型语言模型 (LLM) 提供最准确、最新的信息。但 RAG 并不完美,在更好的使用 RAG 方面仍存在许多挑战。例如当针对整个文本文档提出一个全局的问题时,RAG会失败,因为RAG本质是一个查询聚焦摘要任务,需要先基于index做检索,而且不是一个明确的检索全文任务。同时受限于大语言模型的上下文窗口限制,不可避免中间信息和关联信息丢失的问题。

为了解决这些问题,微软提出了Graph RAG方法,使用 LLM 在两个阶段构建基于图的文本索引:首先从源文档中推导出实体知识图,然后为所有密切相关的实体组预生成社区摘要。给定一个问题,每个社区摘要用于生成部分响应,然后对所有部分响应进行总结以提供最终响应。对于一类关于 100 万个标记范围的数据集的全局理解问题,Graph RAG证明了图 RAG 在生成答案的全面性和多样性方面相对于简单的 RAG 基线有了显着改进。

image.png

但是,Graph RAG使用大语言模型从源文件抽取图entity和总结,并建设图索引,对token的消耗非常大,小编给大家算了一笔账,如果使用GPT-4o,一篇5万字左右的文档,Graph RAG的示例代码构建图的文本索引消耗27万左右 tokens,单次问答消耗约1万tokens,做个测试预计消费2-4美元,这也太贵了!

最佳实践

为了让更多的人更加容易体验Graph RAG,本文在魔搭社区的免费Notebook算力中,体验使用本地模型+Ollama+GraphRAG。

参考项目:

https://github.com/TheAiSingularity/graphrag-local-ollama

代码解析

该项目主要修改了文件路径/graphrag-local-ollama/graphrag/llm/openai/openai_embeddings_llm.py文件,将embedding的调用方式从OpenAI格式改为Ollama格式,大家也可以clone官方代码做如下修改,或者使用如Text-embedding-inference之类的支持OpenAI embedding API格式的库。

class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration
    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self._client = client
        self._configuration = configuration
    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self._configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        embedding_list = []
        for inp in input:
            embedding = ollama.embeddings(model="nomic-embed-text", prompt=inp)
            embedding_list.append(embedding["embedding"])
        return embedding_list

模型配置

安装Ollama

# 直接从modelscope下载ollama安装包
modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux
# 运行ollama安装脚本
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh

embedding模型使用Ollama自带的nomic-embed-text

ollama pull nomic-embed-text  #embedding

LLM使用ModelScope的Mistral-7B-Instruct-v0.3

模型链接:

https://modelscope.cn/models/LLM-Research/Mistral-7B-Instruct-v0.3-GGUF

modelscope download --model=LLM-Research/Mistral-7B-Instruct-v0.3-GGUF --local_dir . Mistral-7B-Instruct-v0.3.fp16.gguf

创建ModelFile

FROM /mnt/workspace/Mistral-7B-Instruct-v0.3.fp16.gguf
PARAMETER stop "[INST]"
PARAMETER stop "[/INST]"
TEMPLATE """{{- if .Messages }}
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (eq (len (slice $.Messages $index)) 1) $.Tools }}[AVAILABLE_TOOLS] {{ $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and $.System (eq (len (slice $.Messages $index)) 1) }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}]
{{- end }}</s>
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}} [/TOOL_RESULTS]
{{- end }}
{{- end }}
{{- else }}[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST]
{{- end }} {{ .Response }}
{{- if .Response }}</s>
{{- end }}"""

创建模型

ollama create mymistral --file ./ModelFile

clone Graphrag(ollama版本)repo并安装

git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
cd graphrag-local-ollama/
pip install -e .

创建输入文件夹

将实验数据复制保存在./ragtest中,也可以增加自己的数据,目前仅支持.txt格式

mkdir -p ./ragtest/input
cp input/* ./ragtest/input

初始化

初始化ragtest文件夹,并存入配置文件

python -m graphrag.index --init --root ./ragtest
mv settings.yaml ./ragtest

可以将配置文件中的模型文件和embedding模型按照需求做对应的修改,如:

image.png

运行索引并创建图:

这部分对LLM有蛮大的要求,如果LLM的输出json格式不稳定,创建图的过程将被中断,在过程中,我们也尝试了多个模型,mistral的json输出稳定性比较好。

python -m graphrag.index --root ./ragtest

image.png

运行query,目前仅支持全局方式

python -m graphrag.query --root ./ragtest --method global "What is machinelearning?"

同时,使用如下python代码,生成可视化的graphml文件

from pygraphml import GraphMLParser
parser = GraphMLParser()
g = parser.parse("./graphrag-local-ollama/ragtest/output/***/artifacts/summarized_graph.graphml")
g.show()

image.png

目录
打赏
0
2
2
0
156
分享
相关文章
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
SEARCH-R1是一种创新的强化学习框架,使大型语言模型(LLM)具备多轮搜索与推理能力。它通过强化学习自主生成查询并优化基于检索结果的推理,无需人工标注数据。相比传统RAG或工具使用方法,SEARCH-R1显著提升问答性能,在多个数据集上实现26%以上的相对性能提升。其核心优势在于强化学习与搜索的深度融合、交错式多轮推理机制及令牌级损失屏蔽技术,推动了LLM在复杂推理和实时知识获取方面的边界。尽管存在奖励函数设计简化等局限性,SEARCH-R1为构建更智能的交互系统提供了重要参考。
63 7
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
RAG-Gym: 基于过程监督的检索增强生成代理优化框架
本文介绍RAG-Gym框架,通过过程监督优化推理与搜索代理。针对传统RAG架构效能限制及提示工程依赖问题,提出统一优化方法。核心贡献包括:设计ReSearch代理架构实现推理与搜索协同;验证过程奖励模型提升性能;系统分析过程监督来源、奖励模型迁移性和性能扩展规律。实验表明,RAG-Gym显著增强知识密集型任务中搜索代理表现,为未来智能系统研发提供理论与实践参考。
36 3
RAG-Gym: 基于过程监督的检索增强生成代理优化框架
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
ViDoRAG 是阿里巴巴通义实验室联合中国科学技术大学和上海交通大学推出的视觉文档检索增强生成框架,基于多智能体协作和动态迭代推理,显著提升复杂视觉文档的检索和生成效率。
100 8
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
面向教育场景的大模型 RAG 检索增强解决方案
检索增强生成模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。以人工智能平台 PAI 为例,为您介绍在云上使用一站式白盒化大模型应用开发平台 PAI-LangStudio 构建面向教育场景的大模型 RAG 检索增强解决方案,应用构建更简便,开发环境更直观。此外,PAI 平台同样发布了面向医疗、金融和法律领域的 RAG 解决方案。
Search-o1:人大清华联合推出动态检索推理框架,使模型能够在推理过程中动态检索外部知识
Search-o1 是中国人民大学和清华大学联合推出的创新框架,通过动态知识检索和精炼,提升大型推理模型在复杂任务中的推理能力。
211 23
Search-o1:人大清华联合推出动态检索推理框架,使模型能够在推理过程中动态检索外部知识
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
最佳实践!使用 GraphRAG + GLM-4 对《红楼梦》全文构建中文增强检索
特别介绍`graphrag-practice-chinese`项目,这是一个针对中文优化的GraphRAG应用实例,通过改进文本切分策略、使用中文提示词及选择更适合中文的模型等手段,显著提升了处理中文内容的能力。项目不仅包括详细的搭建指南,还提供了《红楼梦》全文的索引构建与查询测试示例,非常适合个人学习和研究。
1631 1
实战RAG:构建基于检索增强的问答系统
【10月更文挑战第21天】在当今大数据时代,如何高效地从海量信息中获取所需知识,成为一个亟待解决的问题。检索增强的生成模型(Retrieval-Augmented Generation, RAG)应运而生,它结合了检索技术和生成模型的优点,旨在提高生成模型的回答质量和准确性。作为一名热衷于自然语言处理(NLP)领域的开发者,我有幸在多个项目中应用了RAG技术,并取得了不错的成效。本文将从我个人的实际经验出发,详细介绍如何使用RAG技术来构建一个问答系统,希望能够帮助那些已经对RAG有一定了解并希望将其应用于实际项目中的开发者们。
519 1