AI时代你一定要知道的Agent概念

简介: 这两年,随着人工智能(AI)和计算能力的发展,AI应用的落地速度大大加快。以ChatGPT为代表的AI应用迅速火遍全球,成为打工人的常用工具。紧接着,多模态、AI Agent等各种高大尚的名词也逐渐进入大众视野,吸引了大量关注。那么,到底什么是AI Agent?下文半支烟将带你详细了解这个概念。

这两年,随着人工智能(AI)和计算能力的发展,AI应用的落地速度大大加快。以ChatGPT为代表的AI应用迅速火遍全球,成为打工人的常用工具。紧接着,多模态、AI Agent等各种高大尚的名词也逐渐进入大众视野,吸引了大量关注。那么,到底什么是AI Agent?下文半支烟将带你详细了解这个概念。

1. 一句话总结:什么是AI Agent

AI Agent,经常被翻译为:智能体或代理。

一句话总结,AI Agent就是一个有着聪明大脑而且能够感知外部环境采取行动智能系统

我们可以把它想象成一个能思考和行动的人,而大型语言模型(LLM)就是这个人的“大脑”。通过这个大脑,再加上一些能够感知外部世界和执行任务的部件,AI Agent就变成了一个有“智慧”的机器人。

要让AI Agent充分利用它的“大脑”和各种组件,需要一种协调机制。ReAct机制就是常用的协调机制。通过ReAct机制,AI Agent能够结合外部环境和行动组件,完成复杂的任务。

为什么我们需要AI Agent呢?其实说到底是因为单一的模型对我们来说作用不大,我们需要的是一个具备智能的复杂系统。只有复杂系统才能真正的应到到实际生产工作中。

2. 从单一模型到复合AI系统

要理解AI Agent,我们先看看AI领域的一些变化。

以前的AI系统通常是单一模型,受训练数据的限制,只能解决有限的任务或者固定领域的任务,难以适应新的情况。

而现在,我们有了LLM通用大模型,训练的数据更多,能完成更多领域的任务,比如内容生成、文生图、文生视频等等。同时还可以把大模型和各种外部组件结合起来,构建复合AI系统,这样就能解决更复杂的问题。

举个例子,如果直接让单一模型帮我制定一个去三亚的旅游计划,它无法做到。如果让LLM大模型帮我制定一个去三亚的旅游计划,它可以制定一个鸡肋的计划,几乎不可用,因为它不知道我的个人信息、也不知道航班信息,也不知道天气情况。

但如果我们设计一个复杂AI系统,让系统里的LLM大模型能够通过工具能访问我的个人信息,访问互联网上的天气情况,访问航班信息,再结合航班系统的开放接口,就可以自动帮我预定机票,自动制定行程规划了。

这就是复合AI系统的魅力,它能够结合工具、记忆、其余各种组件 来解决复杂问题。

3. 复合AI系统的模块化

复合AI系统是模块化的,就像拼积木一样。你可以选择不同的模型和组件,然后把它们组合在一起,解决不同的问题。

比如,你可以用一个模型来生成文本,用另一个模型来处理图像,还可以用一些编写的程序代码,一起构建出复杂AI系统。

4. AI Agent的推理与行动能力

AI Agent的核心是让LLM大模型 掌控 复杂AI系统的逻辑,说白了就是让LLM主导AI Agent的思维过程。我们向LLM输入复杂问题,它可以将复杂问题分解并一步步的制定解决方案。

这与设计一个程序系统不同,在AI系统里,LLM大模型会一步一步的思考、制定一步一步的计划,然后一个一个的去解决。并不是按照某个指定程序去执行的。

AI Agent的组件包括:大模型的推理能力、行动能力 和 记忆能力。

  • 大模型的推理能力是 解决问题的核心。
  • 行动能力通过工具(外部程序)实现,模型可以定义何时调用它们以及如何调用它们。工具可以是搜索引擎、计算器、操作数据库等。
  • 记忆能力使大模型能够存储内部日志和对话历史,从而使体验更加个性化。记忆可以帮助大模型在解决复杂问题时保持上下文连贯。

5. 总结

我们正处于AI Agent发展的早期阶段。未来,我们将看到更多的系统利用AI Agent进行"AI+"的转型。

总结来说,AI Agent通过整合LLM的推理能力和外部工具的行动能力,能够在复杂环境中自主解决问题。ReAct机制很好的实现了AI Agent的理念。

希望这篇博客对你有帮助!如果你有问题或想法,欢迎在评论区留言,一起探讨!

如果想了解具体的代码实践,可以翻阅我的这篇文章《基于ReAct机制的AI Agent》。

=====>>>>>> 关于我 <<<<<<=====

本篇完结!欢迎点赞 关注 收藏!!!

原文链接:https://mp.weixin.qq.com/s/E3odBUtAGY9bzGIxOFt1HA

相关文章
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5779 78
|
5月前
|
存储 人工智能 测试技术
手把手带你入门AI智能体:从核心概念到第一个能跑的Agent
AI智能体是一种能感知环境、自主决策并执行任务的人工智能系统。它不仅能生成回应,还可通过工具使用、计划制定和记忆管理完成复杂工作,如自动化测试、脚本编写、缺陷分析等。核心包括大语言模型(LLM)、任务规划、工具调用和记忆系统。通过实践可逐步构建高效智能体,提升软件测试效率与质量。
|
4月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
508 115
|
4月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
491 117
|
4月前
|
人工智能 定位技术 API
智能体(Agent):AI不再只是聊天,而是能替你干活
智能体(Agent):AI不再只是聊天,而是能替你干活
1092 99
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
801 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
人工智能 Cloud Native 搜索推荐
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
600 0

热门文章

最新文章