Transformers 4.37 中文文档(三十二)(3)

简介: Transformers 4.37 中文文档(三十二)

Transformers 4.37 中文文档(三十二)(2)https://developer.aliyun.com/article/1564701


TFEsmForTokenClassification

class transformers.TFEsmForTokenClassification

<来源>

( config )

参数

  • config (EsmConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

ESM 模型在顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

这个模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 Keras Model子类。将其用作常规的 Keras 模型,并参考 TF/Keras 文档以获取所有与一般用法和行为相关的事项。

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示头部未被掩码
  • 0 表示头部被掩码
  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权来将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=Falseconfig.return_dict=False)包含各种元素,这取决于配置(EsmConfig)和输入。

  • loss (tf.Tensor of shape (n,), optional, 当提供 labels 时返回,其中 n 是未被掩码的标签数) — 分类损失。
  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor), 可选的, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFEsmForTokenClassification 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数中定义,但应该在此之后调用 Module 实例,而不是这个函数,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFEsmForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> model = TFEsmForTokenClassification.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

Falcon

原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/falcon

概述

Falcon 是由 TII 构建的一类仅因果解码器模型。最大的 Falcon 检查点已经在 >=1T 个文本标记上进行了训练,特别强调了 RefinedWeb 语料库。它们在 Apache 2.0 许可下提供。

Falcon 的架构现代化且优化用于推断,具有多查询注意力和支持 FlashAttention 等高效注意力变体。既有仅作为因果语言模型训练的“基础”模型,也有接受进一步微调的“指导”模型可用。

Falcon 模型(截至 2023 年)是一些最大且最强大的开源语言模型,在 OpenLLM 排行榜 中始终排名靠前。

转换自定义检查点

Falcon 模型最初作为自定义代码检查点添加到 Hugging Face Hub。但是,现在 Falcon 在 Transformers   库中得到了全面支持。如果您从自定义代码检查点微调了模型,我们建议将您的检查点转换为新的库格式,这应该显著提高稳定性和性能,特别是对于生成,同时消除了使用  trust_remote_code=True 的需要!

您可以使用位于 Transformers 库的 Falcon 模型目录 中的 convert_custom_code_checkpoint.py 脚本将自定义代码检查点转换为完整的 Transformers 检查点。要使用此脚本,只需调用 python convert_custom_code_checkpoint.py --checkpoint_dir my_model。这将原地转换您的检查点,然后您可以立即从目录中加载它,例如 from_pretrained()。如果您的模型尚未上传到 Hub,我们建议在尝试转换之前进行备份,以防万一!

FalconConfig

class transformers.FalconConfig

< source >

( vocab_size = 65024 hidden_size = 4544 num_hidden_layers = 32 num_attention_heads = 71 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True hidden_dropout = 0.0 attention_dropout = 0.0 num_kv_heads = None alibi = False new_decoder_architecture = False multi_query = True parallel_attn = True bias = False max_position_embeddings = 2048 rope_theta = 10000.0 rope_scaling = None bos_token_id = 11 eos_token_id = 11 **kwargs )

参数

  • vocab_size (int, optional, defaults to 65024) — Falcon 模型的词汇量大小。定义了在调用 FalconModel 时可以表示的不同 token 数量。
  • hidden_size (int, optional, defaults to 4544) — 隐藏表示的维度。
  • num_hidden_layers (int, optional, defaults to 32) — Transformer 解码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 71) — Transformer 编码器中每个注意力层的注意力头数量。
  • layer_norm_epsilon (float, optional, defaults to 1e-05) — 层归一化层使用的 epsilon。
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态分布初始化器的标准差。
  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • hidden_dropout (float, optional, defaults to 0.0) — MLP 层的 dropout 概率。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力层的 dropout 概率。
  • num_kv_heads (int, optional) — 每个注意力层使用的键值头的数量。如果未设置,默认为与 num_attention_heads 相同的值。
  • alibi (bool, optional, defaults to False) — 是否在自注意力期间使用 ALiBi 位置偏差。
  • new_decoder_architecture (bool, optional, defaults to False) — 是否使用新的(Falcon-40B)解码器架构。如果为True,则multi_queryparallel_attn参数将被忽略,因为新的解码器总是使用并行注意力。
  • multi_query (bool, optional, defaults to True) — 是否在解码器中使用多查询注意力。当new_decoder_architectureTrue时忽略。
  • parallel_attn (bool, optional, defaults to True) — 是否在前馈层中并行计算注意力。如果为 False,则它们是连续的,就像原始 Transformer 架构中一样。当new_decoder_architectureTrue时忽略。
  • bias (bool, optional, defaults to False) — 是否在线性层上使用偏置。
  • max_position_embeddings (int, optional, defaults to 2048) — 当alibiFalse时,此模型可能使用的最大序列长度。支持 RoPE 的预训练 Falcon 模型最多支持 2048 个标记。
  • rope_theta (float, optional, defaults to 10000.0) — RoPE 嵌入的基本周期。
  • rope_scaling (Dict, optional) — 包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。期望的格式是{"type": 策略名称, "factor": 缩放因子}。当使用此标志时,不要更新max_position_embeddings到预期的新最大值。查看以下主题以了解这些缩放策略的行为更多信息:www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。这是一个实验性功能,可能在未来版本中发生破坏性 API 更改。
  • bos_token_id (int, optional, defaults to 11) — “序列开始”标记的 id。
  • eos_token_id (int, optional, defaults to 11) — “序列结束”标记的 id。

这是一个配置类,用于存储 FalconModel 的配置。根据指定的参数实例化 Falcon 模型,定义模型架构。使用默认值实例化配置将产生类似于tiiuae/falcon-7b架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import FalconModel, FalconConfig
>>> # Initializing a small (2-layer) Falcon configuration
>>> configuration = FalconConfig(num_hidden_layers=2)
>>> # Initializing a model from the small configuration
>>> model = FalconModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

FalconModel

class transformers.FalconModel

<来源>

( config: FalconConfig )

参数

  • config (FalconConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 Falcon 模型变压器输出原始隐藏状态,没有特定的头部。

这个模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length,如果past_key_valuesNone,否则past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用了past_key_values,则应该只传递那些没有计算过去的input_ids作为input_ids
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values (Tuple[Tuple[torch.Tensor]] of length config.num_hidden_layers) — 包含由模型计算的预计算隐藏状态(注意力块中的键和值)(请参见下面的past_key_values输出)。可用于加速顺序解码。已经计算的input_ids的过去不应该作为input_ids传递,因为它们已经被计算。past_key_values的每个元素都是一个元组(past_key, past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 1 表示标记是未掩盖的,
  • 0 表示被掩盖的标记。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
    什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选择在[0, 1]之间:
  • 1 表示头部是未掩盖的,
  • 0 表示头部是掩盖的
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
    如果使用了past_key_values,则可以选择仅输入最后的inputs_embeds(参见past_key_values)。
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请查看返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或torch.FloatTensor元组。

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(FalconConfig)和输入不同的元素。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
    如果使用past_key_values,则仅输出形状为(batch_size, 1, hidden_size)的序列的最后隐藏状态。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True则在交叉注意力块中)可用于加速顺序解码。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个和每层输出的一个)。
    模型每一层的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
  • cross_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在解码器的交叉注意力层中的注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。

FalconModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FalconModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> model = FalconModel.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FalconForCausalLM

class transformers.FalconForCausalLM

< source >

( config: FalconConfig )

参数

  • config(FalconConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Falcon 模型变压器在顶部带有语言建模头(线性层,其权重与输入嵌入绑定)。

该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入等)。

该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, input_ids_length)torch.LongTensor)— input_ids_length = sequence_length,如果past_key_valuesNone,否则为past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values(长度为config.num_hidden_layersTuple[Tuple[torch.Tensor]])— 包含由模型计算的预计算隐藏状态(注意力块中的键和值,参见下面的past_key_values输出)。可用于加速顺序解码。将其过去给定给该模型的input_ids不应作为input_ids传递,因为它们已经计算过。past_key_values的每个元素都是一个元组(past_key,past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充令牌索引上执行注意力的掩码。选择的掩码值在[0, 1]范围内:
  • 1 表示未被masked的标记,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]范围内:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
    如果使用了past_key_values,则可能只需输入最后的inputs_embeds(参见past_key_values)。
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于语言建模的标签。请注意,模型内部的标签已经移位,即您可以设置labels = input_ids。索引在[-100, 0, ..., config.vocab_size]中选择。所有设置为-100的标签都将被忽略(掩码),损失仅计算标签在[0, ..., config.vocab_size]中的标签。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或torch.FloatTensor元组

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False)包括根据配置(FalconConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,), optional, 当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每个层的输出的一个)。
    每个层输出的模型的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。
    在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstorch.FloatTensor元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。
    包含可以用于加速顺序解码的预计算隐藏状态(注意力块中的键和值)。

FalconForCausalLM 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> import torch
>>> from transformers import AutoTokenizer, FalconForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> model = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

FalconForSequenceClassification

class transformers.FalconForSequenceClassification

< source >

( config: FalconConfig )

参数

  • config(FalconConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Falcon 模型变压器顶部带有序列分类头(线性层)。

FalconForSequenceClassification 使用最后一个标记来进行分类,就像其他因果模型(例如 GPT-1)一样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,则它会找到每行中不是填充标记的最后一个标记。如果没有定义pad_token_id,则它会简单地取每行批次中的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,因此它会执行相同的操作(取每行批次中的最后一个值)。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, input_ids_length)torch.LongTensor)— 如果past_key_valuesNone,则input_ids_length = sequence_length,否则为past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用了past_key_values,则只应将尚未计算其过去的input_ids作为input_ids传递。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values(长度为config.num_hidden_layersTuple[Tuple[torch.Tensor]])— 包含由模型计算的预计算隐藏状态(注意块中的键和值),如下面的past_key_values输出所示。可用于加速顺序解码。已经计算过其过去的input_ids不应作为input_ids传递给此模型,因为它们已经被计算过。past_key_values的每个元素都是一个元组(past_key, past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]范围内:
  • 1 表示标记是未被掩盖
  • 0 表示被掩盖的标记。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
    什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]范围内:
  • 1 表示头部是未被掩盖
  • 0 表示头部是被掩盖
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
    如果使用了past_key_values,则只需输入最后的inputs_embeds(参见past_key_values)。
  • use_cache (bool可选) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个transformers.modeling_outputs.SequenceClassifierOutputWithPast或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(FalconConfig)和输入的不同元素。

  • 损失 (torch.FloatTensor,形状为(1,)可选,在提供labels时返回) — 分类(如果config.num_labels==1则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量)
    包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入的输出 + 每个层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FalconForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

单标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, FalconForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> model = FalconForSequenceClassification.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FalconForSequenceClassification.from_pretrained("Rocketknight1/falcon-rw-1b", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, FalconForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
>>> model = FalconForSequenceClassification.from_pretrained("Rocketknight1/falcon-rw-1b", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FalconForSequenceClassification.from_pretrained(
...     "Rocketknight1/falcon-rw-1b", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss


Transformers 4.37 中文文档(三十二)(4)https://developer.aliyun.com/article/1564704

目录
打赏
0
0
0
0
257
分享
相关文章
Transformers 4.37 中文文档(三十一)(3)
Transformers 4.37 中文文档(三十一)
50 0