Transformers 4.37 中文文档(三十二)(2)

简介: Transformers 4.37 中文文档(三十二)

Transformers 4.37 中文文档(三十二)(1)https://developer.aliyun.com/article/1564700


EsmForTokenClassification

class transformers.EsmForTokenClassification

< source >

( config )

参数

  • config (EsmConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

ESM 模型在顶部带有一个标记分类头部(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 表示未被遮蔽的标记,
  • 0 表示被遮蔽的标记。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]内。
    什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(EsmConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)-分类损失。
  • logits(形状为(batch_size, sequence_length, config.num_labels)torch.FloatTensor)-分类分数(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)-形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的输出+每一层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力权重 softmax 后。

EsmForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, EsmForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> model = EsmForTokenClassification.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

EsmForProteinFolding

class transformers.EsmForProteinFolding

<来源>

( config )

参数

  • config(EsmConfig)-包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

ESMForProteinFolding 是原始 ESMFold 模型的 HuggingFace 移植版。它由一个  ESM-2“干”部分和一个蛋白质折叠“头”部分组成,尽管与大多数其他输出头部不同,这个“头”部分在大小和运行时间上与模型的其余部分相似!它输出一个包含关于输入蛋白质的预测结构信息的字典。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Tensor attention_mask: Optional = None position_ids: Optional = None masking_pattern: Optional = None num_recycles: Optional = None ) → export const metadata = 'undefined';transformers.models.esm.modeling_esmfold.EsmForProteinFoldingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)-词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 避免在填充令牌索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 对于未被masked的令牌为 1,
  • 对于被masked的令牌为 0。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列令牌在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]内。
    什么是位置 ID?
  • masking_pattern (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 在训练期间要屏蔽的令牌位置,作为一种正则化形式。掩码值选在[0, 1]之间。
  • num_recycles (int可选,默认为None) — 重复输入序列的次数。如果为None,则默认为config.num_recycles。   “Recycling”包括将折叠主干的输出作为输入传递给主干。在训练期间,每个批次的循环次数应该随着每次循环而变化,以确保模型学会在每次循环后输出有效的预测。在推断期间,num_recycles  应设置为模型训练的最大值,以获得最大准确性。因此,当此值设置为None时,将使用 config.max_recycles。

返回

transformers.models.esm.modeling_esmfold.EsmForProteinFoldingOutputtuple(torch.FloatTensor)

一个transformers.models.esm.modeling_esmfold.EsmForProteinFoldingOutput或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置()和输入的不同元素。

  • frames (torch.FloatTensor) — 输出的框架。
  • sidechain_frames (torch.FloatTensor) — 输出的侧链框架。
  • unnormalized_angles (torch.FloatTensor) — 预测的未归一化主链和侧链扭转角度。
  • angles (torch.FloatTensor) — 预测的主链和侧链扭转角度。
  • positions (torch.FloatTensor) — 预测的主链和侧链原子位置。
  • states (torch.FloatTensor) — 蛋白质折叠主干的隐藏状态。
  • s_s (torch.FloatTensor) — 通过连接 ESM-2 LM 干每一层的隐藏状态派生的每个残基的嵌入。
  • s_z (torch.FloatTensor) — 成对残基嵌入。
  • distogram_logits (torch.FloatTensor) — 用于计算残基距离的 distogram 的输入 logits。
  • lm_logits (torch.FloatTensor) — ESM-2 蛋白质语言模型干输出的 logits。
  • aatype (torch.FloatTensor) — 输入的氨基酸(AlphaFold2 索引)。
  • atom14_atom_exists (torch.FloatTensor) — 每个原子是否存在于 atom14 表示中。
  • residx_atom14_to_atom37 (torch.FloatTensor) — 在 atom14 和 atom37 表示之间的原子映射。
  • residx_atom37_to_atom14 (torch.FloatTensor) — 在 atom37 和 atom14 表示之间的原子映射。
  • atom37_atom_exists (torch.FloatTensor) — 每个原子是否存在于 atom37 表示中。
  • residue_index (torch.FloatTensor) — 蛋白质链中每个残基的索引。除非使用内部填充令牌,否则这将是从 0 到sequence_length的整数序列。
  • lddt_head (torch.FloatTensor) — 用于计算 plddt 的 lddt 头部的原始输出。
  • plddt (torch.FloatTensor) — 每个残基的置信度分数。低置信度区域可能表明模型预测不确定的区域,或者蛋白质结构无序的区域。
  • ptm_logits (torch.FloatTensor) — 用于计算 ptm 的原始对数。
  • ptm (torch.FloatTensor) — TM-score 输出,代表模型对整体结构的高级置信度。
  • aligned_confidence_probs (torch.FloatTensor) — 对齐结构的每个残基的置信度分数。
  • predicted_aligned_error (torch.FloatTensor) — 模型预测与真实值之间的预测误差。
  • max_predicted_aligned_error (torch.FloatTensor) — 每个样本的最大预测误差。

EsmForProteinFolding 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, EsmForProteinFolding
>>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
>>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False)  # A tiny random peptide
>>> outputs = model(**inputs)
>>> folded_positions = outputs.positions

TensorFlow 隐藏 TensorFlow 内容

TFEsmModel

class transformers.TFEsmModel

< source >

( config: EsmConfig add_pooling_layer = True *inputs **kwargs )

参数

  • config (EsmConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 ESM 模型变压器输出原始隐藏状态,没有特定的头部。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 Keras Model 子类。将其用作常规 Keras 模型,并参考 TF/Keras 文档以了解所有与一般使用和行为相关的事项。

call

< source >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以获取详细信息。
    什么是输入 ID?
  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]
  • 1 表示 未被掩盖 的标记,
  • 0 表示 被掩盖 的标记。
  • 什么是注意力掩码?
  • position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选在范围 [0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选在 [0, 1]
  • 1 表示头部 未被掩盖
  • 0 表示头部被 掩盖
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选)— 避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]中。
  • 对于未被掩码的标记为 1,
  • 对于被掩码的标记为 0。
  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]])— 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)而不是所有decoder_input_ids的形状为(batch_size, sequence_length)
  • use_cachebool可选,默认为True)— 如果设置为True,将返回past_key_values键值状态,可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或者tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或者一个tf.Tensor元组(如果传递了return_dict=False或者config.return_dict=False时)包括根据配置(EsmConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor)— 模型最后一层的隐藏状态序列。
  • pooler_output(形状为(batch_size, hidden_size)tf.Tensor)— 序列第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。
    此输出通常不是输入的语义内容的良好摘要,您通常最好对整个输入序列的隐藏状态进行平均或池化。
  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=True或者config.use_cache=True时返回)— 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)-形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出+一个用于每一层的输出)。
    模型在每一层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 后使用,用于计算交叉注意力头中的加权平均值。

TFEsmModel 前向方法,覆盖__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFEsmModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state

TFEsmForMaskedLM

class transformers.TFEsmForMaskedLM

<来源>

( config )

参数

  • config(EsmConfig)-模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

ESM 模型顶部带有语言建模头。

这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法(如下载或保存,调整输入嵌入,修剪头等)。

这个模型也是 Keras Model 的子类。将其用作常规 Keras 模型,并参考 TF/Keras 文档以了解所有与一般用法和行为相关的事项。

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)tf.Tensor)-词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选)-避免在填充标记索引上执行注意力的掩码。选择在[0, 1]中的掩码值:
  • 对于未被屏蔽的标记为 1,
  • 对于被屏蔽的标记为 0。
  • 注意力掩码是什么?
  • position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于将自注意力模块的选定头部置零的掩码。掩码值选定在 [0, 1] 之间:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(masked),损失仅计算具有标签在 [0, ..., config.vocab_size] 范围内的标记。
  • kwargs (Dict[str, any], optional, 默认为 {}) — 用于隐藏已被弃用的旧参数。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor 元组(如果传递 return_dict=False 或者 config.return_dict=False 时)包含各种元素,取决于配置(EsmConfig)和输入。

  • loss (tf.Tensor of shape (n,), optional, 其中 n 是非掩码标签的数量,在提供 labels 时返回) — 掩码语言建模(MLM)损失。
  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=True 或者 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    每层模型的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或者 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头部中的加权平均值。

TFEsmForMaskedLM 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传播的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFEsmForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)

TFEsmForSequenceClassification

class transformers.TFEsmForSequenceClassification

<来源>

( config )

参数

  • config(EsmConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

ESM 模型变压器,顶部带有序列分类/回归头(顶部的线性层在汇总输出之上),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 Keras Model子类。将其用作常规 Keras 模型,并参考 TF/Keras 文档以获取有关一般用法和行为的所有事项。

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)tf.Tensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未屏蔽的标记为 1,
  • 0 表示标记为屏蔽
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, sequence_length)tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)tf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]之间:
  • 1 表示头部未被屏蔽
  • 0 表示头部被屏蔽
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (tf.Tensor的形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(EsmConfig)和输入的各种元素。

  • loss (tf.Tensor的形状为(batch_size, )可选,在提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (tf.Tensor的形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor)可选,在传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,在传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

TFEsmForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFEsmForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> model = TFEsmForSequenceClassification.from_pretrained("facebook/esm2_t6_8M_UR50D")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFEsmForSequenceClassification.from_pretrained("facebook/esm2_t6_8M_UR50D", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss


Transformers 4.37 中文文档(三十二)(3)https://developer.aliyun.com/article/1564703

相关文章
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十九)(1)
Transformers 4.37 中文文档(二十九)
40 3
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十一)(4)
Transformers 4.37 中文文档(三十一)
35 0
|
4月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(三十一)(2)
Transformers 4.37 中文文档(三十一)
36 0
|
4月前
|
存储 PyTorch TensorFlow
Transformers 4.37 中文文档(三十一)(1)
Transformers 4.37 中文文档(三十一)
43 0
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十一)(5)
Transformers 4.37 中文文档(三十一)
32 0
|
4月前
|
缓存 数据挖掘 PyTorch
Transformers 4.37 中文文档(三十一)(3)
Transformers 4.37 中文文档(三十一)
39 0
|
4月前
|
机器学习/深度学习 PyTorch 语音技术
Transformers 4.37 中文文档(三十二)(4)
Transformers 4.37 中文文档(三十二)
37 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十二)(5)
Transformers 4.37 中文文档(三十二)
68 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
Transformers 4.37 中文文档(三十二)(1)
Transformers 4.37 中文文档(三十二)
52 0
|
4月前
|
存储 缓存 PyTorch
Transformers 4.37 中文文档(三十二)(3)
Transformers 4.37 中文文档(三十二)
62 0
下一篇
无影云桌面