Transformers 4.37 中文文档(四十五)(5)

简介: Transformers 4.37 中文文档(四十五)

Transformers 4.37 中文文档(四十五)(4)https://developer.aliyun.com/article/1565216


MobileBertModel

class transformers.MobileBertModel

<来源>

( config add_pooling_layer = True )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

MobileBert Model 是一个裸的 transformer 模型,输出原始的隐藏状态,没有特定的头部。

这个模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

arxiv.org/pdf/2004.02984.pdf

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_hidden_states: Optional = None output_attentions: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 1 表示未被掩盖的标记,
  • 0 表示被掩盖的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]之间:
  • 0 对应于句子 A标记。
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选择在[0, 1]之间:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPooling 或torch.FloatTensor元组

一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(MobileBertConfig)和输入。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的输出的隐藏状态序列。
  • pooler_output (torch.FloatTensor,形状为(batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理后。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层的权重是从预训练期间的下一个句子预测(分类)目标中训练的。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出)的形状为(batch_size, sequence_length, hidden_size)
    模型在每个层的输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — torch.FloatTensor元组(每个层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MobileBertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertModel.from_pretrained("google/mobilebert-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

MobileBertForPreTraining

class transformers.MobileBertForPreTraining

<来源>

( config )

参数

  • config(MobileBertConfig](/docs/transformers/v4.37.2/en/main_classes/model#transformers.PreTrainedModel.from_pretrained)方法以加载模型权重。

MobileBert 模型在预训练期间在顶部有两个头部:一个“掩码语言建模”头部和一个“下一个句子预测(分类)”头部。

该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

前进

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)-词汇表中输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)-避免对填充令牌索引执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 表示未被“掩码”的令牌。
  • 0 表示被“掩码”的令牌。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A令牌,
  • 1 对应于句子 B令牌。
  • 什么是令牌类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)-用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部未被“掩码”。
  • 0 表示头部是“掩码”。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)-可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)-是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)-是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)-是否返回 ModelOutput 而不是普通元组。
  • 标签 (torch.LongTensor 的形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅计算具有标签在 [0, ..., config.vocab_size] 内的标记。
  • next_sentence_label (torch.LongTensor 的形状为 (batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 内:
  • 0 表示序列 B 是序列 A 的延续,
  • 1 表示序列 B 是一个随机序列。

返回

transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput 或 tuple(torch.FloatTensor)

一个 transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素,取决于配置(MobileBertConfig)和输入。

  • loss (可选,当提供了 labels 时返回,形状为 (1,)torch.FloatTensor) — 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。
  • prediction_logits (torch.FloatTensor 的形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits (torch.FloatTensor 的形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出状态加上初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每个层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MobileBertForPreTraining 前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MobileBertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

MobileBertForMaskedLM

class transformers.MobileBertForMaskedLM

< source >

( config )

参数

  • config (MobileBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有language modeling头。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
  • 1 表示未被masked的标记,
  • 0 表示被masked的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]内:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False)包含各种元素,具体取决于配置(MobileBertConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MobileBertForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForMaskedLM.from_pretrained("google/mobilebert-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.57


Transformers 4.37 中文文档(四十五)(6)https://developer.aliyun.com/article/1565220

相关文章
|
4月前
|
存储 自然语言处理 测试技术
Transformers 4.37 中文文档(四十五)(4)
Transformers 4.37 中文文档(四十五)
41 1
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
Transformers 4.37 中文文档(四十七)(5)
Transformers 4.37 中文文档(四十七)
59 12
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十二)(6)
Transformers 4.37 中文文档(四十二)
34 5
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十二)(5)
Transformers 4.37 中文文档(四十二)
44 4
|
4月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十五)(2)
Transformers 4.37 中文文档(四十五)
84 3
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十五)(8)
Transformers 4.37 中文文档(四十五)
32 2
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十五)(9)
Transformers 4.37 中文文档(四十五)
31 2
|
4月前
|
缓存 PyTorch 异构计算
Transformers 4.37 中文文档(四十五)(1)
Transformers 4.37 中文文档(四十五)
76 2
|
4月前
|
XML 测试技术 数据格式
Transformers 4.37 中文文档(四十二)(4)
Transformers 4.37 中文文档(四十二)
34 3
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十五)(3)
Transformers 4.37 中文文档(四十五)
37 1