Transformers 4.37 中文文档(三十一)(2)https://developer.aliyun.com/article/1564898
ErnieForPreTraining
class transformers.ErnieForPreTraining
( config )
参数
config
(ErnieConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Ernie 模型在预训练期间顶部有两个头部:一个masked language modeling
头部和一个next sentence prediction (classification)
头部。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None task_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 对于未被
masked
的标记, - 对于被
masked
的标记为 0。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于句子 A的标记,
- 1 对应于句子 B的标记。
- 什么是标记类型 ID?
task_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 任务类型嵌入是一种特殊嵌入,用于表示不同任务的特征,例如基于单词的预训练任务、基于结构的预训练任务和基于语义的预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在范围[0, config.task_type_vocab_size-1]
内。position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
中:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。labels (torch.LongTensor
of shape(batch_size, sequence_length)
, 可选): 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
内的标记 next_sentence_label (torch.LongTensor
of shape(batch_size,)
, 可选): 用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见input_ids
文档字符串)索引应在[0, 1]
:
- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。kwargs (
Dict[str, any]
, 可选,默认为 {}): 用于隐藏已被弃用的旧参数。
返回
transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(ErnieConfig)和输入的不同元素。
loss
(可选, 当提供labels
时返回,torch.FloatTensor
形状为(1,)
) — 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。prediction_logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(在 SoftMax 之前的每个词汇标记的得分)。seq_relationship_logits
(torch.FloatTensor
of shape(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(在 SoftMax 之前的 True/False 继续得分)。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出处的隐藏状态以及初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每一层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForPreTraining 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ErnieForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits
ErnieForCausalLM
class transformers.ErnieForCausalLM
( config )
参数
config
(ErnieConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Ernie 模型在顶部带有一个语言建模
头部,用于 CLM 微调。
此模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None task_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示未被屏蔽的标记,
- 0 表示被屏蔽的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
task_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选)— 任务类型嵌入是一种特殊嵌入,用于表示不同任务的特征,例如基于单词的预训练任务、基于结构的预训练任务和基于语义的预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
的范围为[0, config.task_type_vocab_size-1]
。position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部未被屏蔽,
- 0 表示头部被屏蔽。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通元组。encoder_hidden_states
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, 可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选在[0, 1]
内:
- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 用于计算从左到右的语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(被masked
),损失仅计算具有标签 n[0, ..., config.vocab_size]
的标记。past_key_values
(tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量 — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。
如果使用past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。use_cache
(bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,具体取决于配置(ErnieConfig)和输入。
loss
(torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出+每层的输出)。
模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在自注意力头中的注意力 SoftMax 之后的注意力权重,用于计算加权平均值。cross_attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 SoftMax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。只有在config.is_decoder = True
时才相关。
包含预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(参见past_key_values
输入)。
ErnieForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import torch >>> from transformers import AutoTokenizer, ErnieForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForCausalLM.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs, labels=inputs["input_ids"]) >>> loss = outputs.loss >>> logits = outputs.logits
ErnieForMaskedLM
class transformers.ErnieForMaskedLM
( config )
参数
config
(ErnieConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模
头的 Ernie 模型。
该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None task_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
- 注意力掩码是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于一个句子 A的标记,
- 1 对应于一个句子 B的标记。
- 什么是标记类型 ID?
task_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如基于词的预训练任务、基于结构的预训练任务和基于语义的预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在范围[0, config.task_type_vocab_size-1]
内。position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
内。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]
之间:
- 1 表示头部是
未屏蔽
, - 0 表示头部是
屏蔽
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。labels
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]
内的标记。
返回
transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或者一个torch.FloatTensor
的元组(如果传递了return_dict=False
或者当config.return_dict=False
时)包括不同的元素,取决于配置(ErnieConfig)和输入。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
每层模型的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或者当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
ErnieForMaskedLM 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用 Module
实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ErnieForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForMaskedLM.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) 'paris' >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 0.88
ErnieForNextSentencePrediction
class transformers.ErnieForNextSentencePrediction
( config )
参数
config
(ErnieConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Ernie 模型在顶部带有一个 下一个句子预测(分类)
头部。
该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None task_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
() 以获取详细信息。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
:
- 1 用于
未被掩码
的标记, - 0 用于
被掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]
:
- 0 对应于一个 句子 A 标记,
- 1 对应于一个 句子 B 标记。
- 什么是标记类型 ID?
task_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊嵌入,用于表示不同任务的特征,例如基于词的预训练任务、基于结构的预训练任务和基于语义的预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在范围[0, config.task_type_vocab_size-1]
中。position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
:
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见input_ids
文档字符串)。索引应在[0, 1]
范围内:
- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
返回
transformers.modeling_outputs.NextSentencePredictorOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(ErnieConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供next_sentence_label
时返回)- 下一个序列预测(分类)损失。logits
(形状为(batch_size, 2)
的torch.FloatTensor
)- 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 继续得分)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForNextSentencePrediction 的前向方法,覆盖__call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
ErnieForSequenceClassification
class transformers.ErnieForSequenceClassification
( config )
参数
config
(ErnieConfig)— 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,只加载配置。 查看 from_pretrained() 方法以加载模型权重。
Ernie 模型变压器,顶部带有序列分类/回归头(池化输出的顶部线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。 请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module 的子类。 将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None task_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。 选择在[0, 1]
中的掩码值:
- 1 用于未被“掩码”处理的标记,
- 0 用于被“掩码”处理的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。 索引选择在[0, 1]
中:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
task_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如基于词的预训练任务、基于结构的预训练任务和基于语义的预训练任务。 我们为每个任务分配一个task_type_id
,task_type_id
在范围[0, config.task_type_vocab_size-1]
中。position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 输入序列标记在位置嵌入中的位置索引。 选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。 选择在[0, 1]
中的掩码值:
- 1 表示头部未被“掩码”,
- 0 表示头部被“掩码”。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
ErnieForSequenceClassification 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
Transformers 4.37 中文文档(三十一)(4)https://developer.aliyun.com/article/1564900