Transformers 4.37 中文文档(二十六)(1)https://developer.aliyun.com/article/1563712
CamembertForCausalLM
class transformers.CamembertForCausalLM
( config )
参数
config
(CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有顶部语言建模
头部的 CamemBERT 模型,用于 CLM 微调。
此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Tuple = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,optional) — 遮蔽填充标记索引上的注意力。遮罩值选择在[0, 1]
之间:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。
- 什么是注意力遮罩?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块中的选定头部失效的遮罩。遮罩值选择在[0, 1]
之间:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。encoder_hidden_states
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,optional) — 遮蔽编码器输入的填充标记索引上的注意力。如果模型配置为解码器,则在交叉注意力中使用此遮罩。遮罩值选择在[0, 1]
之间:
- 1 表示未被
masked
的标记, - 对于被
masked
的标记为 0。
labels
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 用于计算从左到右的语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
(参见input_ids
文档字符串)中。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。past_key_values
(长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的 4 个张量)— 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。
如果使用past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。use_cache
(bool
,可选)— 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(CamembertConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 语言建模损失(用于下一个标记预测)。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的输出+每层的输出)。
每层模型的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的torch.FloatTensor
元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。
CamembertForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> config = AutoConfig.from_pretrained("camembert-base") >>> config.is_decoder = True >>> model = CamembertForCausalLM.from_pretrained("camembert-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits
CamembertForMaskedLM
class transformers.CamembertForMaskedLM
( config )
参数
config
(CamembertConfig)-模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模
头的 CamemBERT 模型。
这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)-词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)-避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
范围内:
- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)-段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]
范围内:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)-每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)-用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
范围内:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
内的标记。kwargs
(Dict[str, any]
, 可选,默认为*{}*) — 用于隐藏已弃用的旧参数。
返回
transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时),包括根据配置(CamembertConfig)和输入的不同元素。
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出+每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
CamembertForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, CamembertForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> model = CamembertForMaskedLM.from_pretrained("camembert-base") >>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of <mask> >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) ' Paris' >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-<mask> tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 0.1
CamembertForSequenceClassification
class transformers.CamembertForSequenceClassification
( config )
参数
config
(CamembertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
CamemBERT 模型变压器,顶部带有一个序列分类/回归头(池化输出的顶部线性层),例如用于 GLUE 任务。
这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示标记是
未屏蔽
, - 0 表示标记是
屏蔽
。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部是
未屏蔽
, - 0 表示头部是
屏蔽
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回值
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
的元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(CamembertConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 分类(如果 config.num_labels==1 则为回归)损失。logits
(形状为(batch_size, config.num_labels)
的torch.FloatTensor
)— 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)—torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)的形状为(batch_size, sequence_length, hidden_size)
。
模型在每个层的输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—torch.FloatTensor
的元组(每个层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
CamembertForSequenceClassification 的前向方法覆盖了__call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
单标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, CamembertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'optimism' >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 0.08
多标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, CamembertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = CamembertForSequenceClassification.from_pretrained( ... "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).loss
CamembertForMultipleChoice
class transformers.CamembertForMultipleChoice
( config )
参数
config
(CamembertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在 CamemBERT 模型顶部带有多选分类头(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None labels: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, num_choices, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, num_choices, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示未被
掩盖
的标记, - 0 表示被
掩盖
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, num_choices, sequence_length)
的torch.LongTensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于一个句子 A标记,
- 1 对应于一个句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, num_choices, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被
掩盖
, - 0 表示头部被
掩盖
。
inputs_embeds
(形状为(batch_size, num_choices, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,取决于配置(CamembertConfig)和输入。
loss
(形状为*(1,)*的torch.FloatTensor
,可选,当提供labels
时返回)— 分类损失。logits
(形状为(batch_size, num_choices)
的torch.FloatTensor
)— num_choices是输入张量的第二维度。(参见上面的input_ids)。
分类得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出+每个层的输出)。
模型在每个层的输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每个层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
CamembertForMultipleChoice 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默忽略它们。
示例:
>>> from transformers import AutoTokenizer, CamembertForMultipleChoice >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> model = CamembertForMultipleChoice.from_pretrained("camembert-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
Transformers 4.37 中文文档(二十六)(3)https://developer.aliyun.com/article/1563717