Transformers 4.37 中文文档(二十六)(3)https://developer.aliyun.com/article/1563717
TFCamembertForCasualLM
class transformers.TFCamembertForCausalLM
( config: CamembertConfig *inputs **kwargs )
参数
config
(CamembertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模
头的 CamemBERT 模型,用于 CLM 微调。
该模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型还是一个tf.keras.Model子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种输入格式:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()
等方法时,您应该可以“轻松”地使用 - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:
- 一个只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个包含一个或多个与文档字符串中给定输入名称相关联的输入张量的字典:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
- 1 表示
未被掩码
的标记, - 0 表示被
掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]
之间:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(Numpy 数组
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(Numpy 数组
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块的选定头部失效的遮罩。选择的遮罩值在[0, 1]
中:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量中的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量中的hidden_states
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。return_dict
(bool
,optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,optional,默认为False
) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。encoder_hidden_states
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 编码器最后一层的隐藏状态序列的输出。如果模型配置为解码器,则用于交叉注意力。encoder_attention_mask
(tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 遮蔽以避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则此遮罩将用于交叉注意力。选择的遮罩值在[0, 1]
中:
- 1 表示未被
masked
的标记, - 对于被
masked
的标记为 0。
past_key_values
(长度为config.n_layers
的Tuple[Tuple[tf.Tensor]]
) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,则用户可以选择仅输入最后一个decoder_input_ids
(这些输入没有将其过去的键值状态提供给此模型)的形状为(batch_size, 1)
而不是所有decoder_input_ids
的形状为(batch_size, sequence_length)
。use_cache
(bool
,optional,默认为True
) — 如果设置为True
,则将返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。labels
(tf.Tensor
或np.ndarray
,形状为(batch_size, sequence_length)
,optional) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]
中。
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(CamembertConfig)和输入而异的各种元素。
loss
(tf.Tensor
,形状为(n,)
,optional,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。past_key_values
(List[tf.Tensor]
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values
输入)。
TFCamembertForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFCamembertForCausalLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> model = TFCamembertForCausalLM.from_pretrained("camembert-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> logits = outputs.logits
TFCamembertForMaskedLM
class transformers.TFCamembertForMaskedLM
( config *inputs **kwargs )
参数
config
(CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
CamemBERT 模型,顶部带有语言建模
头。
该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量放在第一个位置参数中:
- 一个只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个变长列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 分段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A的标记,
- 1 对应于句子 B的标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)- 用于使自注意力模块中的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。labels
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
(请参阅input_ids
文档字符串)中。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(CamembertConfig)和输入的各种元素。
loss
(tf.Tensor
of shape(n,)
, optional, 其中 n 是未屏蔽标签的数量,在提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。
TFCamembertForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFCamembertForMaskedLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> model = TFCamembertForMaskedLM.from_pretrained("camembert-base") >>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of <mask> >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) >>> tokenizer.decode(predicted_token_id) ' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-<mask> tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(float(outputs.loss), 2) 0.1
TFCamembertForSequenceClassification
class transformers.TFCamembertForSequenceClassification
( config *inputs **kwargs )
参数
config
(CamembertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
CamemBERT 模型变压器,顶部带有序列分类/回归头(汇总输出的线性层),例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用诸如model.fit()
之类的方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:
- 只有一个仅包含
input_ids
的张量,没有其他内容:model(input_ids)
- 按照文档字符串中给定的顺序,长度可变的列表,其中包含一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的蒙版。选择的蒙版值在[0, 1]
中:
- 1 表示未被“蒙版”的标记。
- 0 表示被“蒙版”的标记。
- 注意力蒙版是什么?
token_type_ids
(Numpy array
或形状为(batch_size, sequence_length)
的tf.Tensor
,optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(Numpy array
或形状为(batch_size, sequence_length)
的tf.Tensor
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(Numpy array
或形状为(num_heads,)
或(num_layers, num_heads)
的tf.Tensor
,optional) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被
掩码
。 - 0 表示头部被
掩码
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。labels
(tf.Tensor
,形状为(batch_size,)
,optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tf.Tensor
元组
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(CamembertConfig)和输入的不同元素。
loss
(tf.Tensor
,形状为(batch_size,)
,optional,当提供labels
时返回) — 分类(如果 config.num_labels==1 则为回归)损失。logits
(tf.Tensor
,形状为(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
TFCamembertForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但应该在之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFCamembertForSequenceClassification >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(**inputs).logits >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] 'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels) >>> labels = tf.constant(1) >>> loss = model(**inputs, labels=labels).loss >>> round(float(loss), 2) 0.08
Transformers 4.37 中文文档(二十六)(5)https://developer.aliyun.com/article/1563721