告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!

简介: 【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。

在现代软件开发中,并发编程是提高程序执行效率和响应速度的重要手段。Python作为一门广泛使用的高级编程语言,提供了多种并发执行的方式,其中线程(threading)和进程(multiprocessing)是最为基础且常用的两种。本文将作为一份详尽的教程/指南,带你深入了解Python中的线程与进程并发技术,让你的代码性能实现质的飞跃。

一、理解并发与并行的概念
在开始之前,我们需要明确并发(Concurrency)与并行(Parallelism)的区别。并发指的是多个任务在同一时间段内交替执行,而并行则是指多个任务在同一时刻点上同时执行。在Python中,由于GIL(全局解释器锁)的存在,标准库中的线程库(threading)在CPU密集型任务上可能无法实现真正的并行,但在IO密集型任务中,线程仍然能够显著提升效率。而进程则由于拥有独立的内存空间,可以实现真正的并行执行。

二、Python线程编程
Python的threading模块提供了基本的线程和锁的支持,使得编写多线程程序变得相对简单。

示例代码:使用线程完成多任务

python
import threading

def task(n):
print(f"Task {n} is running")

创建并启动线程

threads = [threading.Thread(target=task, args=(i,)) for i in range(5)]
for t in threads:
t.start()

等待所有线程完成

for t in threads:
t.join()

print("All tasks completed.")
在这个例子中,我们创建了5个线程来执行相同的任务,每个线程打印自己的执行信息。通过join()方法,我们确保主程序在所有线程完成后再继续执行。

三、Python进程编程
对于需要更高级别并发或需要避免GIL限制的场景,Python的multiprocessing模块提供了多进程的支持。

示例代码:使用进程完成多任务

python
from multiprocessing import Process

def task(n):
print(f"Process {n} is running")

创建并启动进程

processes = [Process(target=task, args=(i,)) for i in range(5)]
for p in processes:
p.start()

等待所有进程完成

for p in processes:
p.join()

print("All processes completed.")
与线程示例类似,这里我们创建了5个进程来执行打印任务。不同的是,由于进程间内存隔离,每个进程都有自己的独立空间,因此可以绕过GIL的限制,实现真正的并行执行。

四、总结与最佳实践
选择合适的并发模型:根据任务类型(CPU密集型或IO密集型)和性能需求,选择合适的并发模型。
注意线程安全:在使用多线程时,注意对共享资源的访问进行同步,避免数据竞争。
利用多核优势:对于CPU密集型任务,优先考虑使用多进程来实现并行处理。
性能调优:并发编程并不总是能带来性能提升,合理设计程序结构,避免不必要的并发开销。
通过掌握Python中的线程与进程并发技术,你可以有效地提升程序的执行效率和响应速度,让你的代码在处理复杂任务时更加游刃有余。希望本文的教程/指南能为你的并发编程之路提供有力的支持。

目录
打赏
0
3
3
1
281
分享
相关文章
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
|
15天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
26 4
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
47 0
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
29天前
|
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
49 5
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能