开源一个RAG大模型本地知识库问答机器人-ChatWiki

简介: 准备工作再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求• Cpu:最低需要2 Core• RAM:最低需要4GB开始安装ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:

目前大模型非常火爆,很多企业一直想把大模型用在企业的客服中,但是基本上没有太多的成功案例。这个事情,我思考了下

1. 企业的客服服务是非常严谨的,不能乱回答。

比如在电商场景,用户说这个产品是否可以退款, 那大模型如果回答说可以。如果产品价格非常高,比如在1万以上,那么这个产品是不是要退款?损失谁来回答。 所以企业必须要机器人严格按照企业的知识库的要求来,不能乱回答

 

2.企业的资料的保密性

目前的大模型,当你把资料传给大模型的时候,实际上,你把资料也给机器人当做语料去训练机器人了,你的文档就是公开的文档了,这对许多企业来说,基本上不会把敏感资料传给大模型了

还记得之前网上报道过,三星把一个芯片资料传给大模型,导致敏感技术资料泄密的问题。

 

ChatGPT「奶奶漏洞」又火了,扮演过世祖母讲睡前故事,骗出Win11序列号

 

3 大模型从问答,到企业部署到自己的客服渠道,有大多的工作量

 大模型提高了接口,提供了文字问答能力,但是,企业的客户咨询,是从

 1 APP里

 2 公司官网

 3 公众号,小程序,视频号

 4 抖音

 5 小红书

 6 微博

这么渠道,各个场景都要去覆盖,一般的企业根本就没这个开发实力。

 

基于这个想法,我就想做个基于大模型的问答机器人,完全打通小程序客服,微信公众号客服,视频号小店客服,H5APP客服,公司官网,部署简单。这样企业就很方便的部署起来。

我的想法是

方法一:渠道统一管理, 把常用的渠道,全部默认支持到

方法二 :将企业知识库管理简单化

            直接将doc,网址,pdf ,excel 直接上传到,就可以支持基于知识库的问答了。

 

上传的知识库,进行分段embedding操作

 

最后创建机器人,关联这个知识库,就可以对外提供服务了

 

以下是我们的架构图

下面是具体的一些介绍

ChatWiki

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。

能力


1、专属 AI 问答系统

通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。

2、一键接入模型

ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。

3、数据自动预处理

提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。

4、简单易用的使用方式

ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。

5、适配不同业务场景

ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、绑定到微信公众号或小程序、桌面客户端等,可以满足企业不同业务场景使用需求。

开始使用


准备工作

再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求

  • Cpu:最低需要2 Core
  • RAM:最低需要4GB

开始安装

ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:

sudo curl -sSL https://get.docker.com/ | CHANNEL=stable sh

 

安装好Docker后,逐步执行一下步骤安装ChatWiki社区版

(1).克隆或下载chatwiki项目代码

git clone https://github.com/zhimaAi/chatwiki.gitnewsbriefpoundbpress

 

(2).使用Docker Compose构建并启动项目

cd chatwiki/docker

docker compose up -d

部署手册

在安装和部署中有任何问题或者建议,可以联系我们获取帮助,也可以参考下面的文档。

界面


技术架构


技术栈


  • 前端:vue.js
  • 后端:golang +python
  • 数据库:PostgreSQL16+pgvector+zhparser
  • 缓存:redis5.0
  • web服务:nginx
  • 异步队列:nsq
  • 进程管理:supervisor
  • 模型:支持OpenAI、Google Gemini、Claude3、通义千文、文心一言、讯飞星火、百川、腾讯混元等模型。

感兴趣的朋友,可以去我们github https://github.com/zhimaAi/chatwiki地址里点个star, 多谢多谢!

相关文章
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
GR00T N1:全球首个开源人形机器人基座模型!双系统架构解锁通用操作
GR00T N1 是英伟达推出的全球首个开源人形机器人基础模型,基于多模态输入和双系统架构,能够执行复杂操作任务,适用于物流、制造、零售等多个领域。
80 1
GR00T N1:全球首个开源人形机器人基座模型!双系统架构解锁通用操作
|
17天前
|
人工智能 编解码 机器人
RoboBrain:智源开源具身大脑模型,32B参数实现跨机器人协作
智源研究院推出的开源具身大脑模型RoboBrain,通过多阶段训练策略和模块化设计,在任务规划、可操作区域感知和轨迹预测等机器人核心能力上实现突破性进展。
105 46
RoboBrain:智源开源具身大脑模型,32B参数实现跨机器人协作
|
6天前
|
传感器 人工智能 算法
傅利叶开源人形机器人,提供完整的开源套件!Fourier N1:具备23个自由度和3.5米/秒运动能力
傅利叶推出的开源人形机器人N1搭载自研动力系统与多模态交互模块,具备23个自由度和3.5米/秒运动能力,提供完整开源套件助力开发者验证算法。
85 3
傅利叶开源人形机器人,提供完整的开源套件!Fourier N1:具备23个自由度和3.5米/秒运动能力
|
24天前
|
数据采集 人工智能 数据可视化
SpatialLM:手机视频秒建3D场景!开源空间认知模型颠覆机器人训练
SpatialLM 是群核科技开源的空间理解多模态模型,能够通过普通手机拍摄的视频重建 3D 场景布局,赋予机器人类似人类的空间认知能力,适用于具身智能训练、自动导航、AR/VR 等领域。
114 5
SpatialLM:手机视频秒建3D场景!开源空间认知模型颠覆机器人训练
|
6天前
|
人工智能 数据可视化 关系型数据库
23.5K star!零代码构建AI知识库,这个开源神器让问答系统开发像搭积木一样简单!
FastGPT 是一个基于大语言模型的智能知识库平台,提供开箱即用的数据处理、RAG检索和可视化AI工作流编排能力,让你无需编写代码就能轻松构建复杂的问答系统!
|
1月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】开源调度框架Quartz写入Boolean值到YashanDB报错
Quartz是广泛应用于企业级应用的开源作业调度框架,使用布尔值记录任务状态。在YashanDB 23.2.0.12版本中,由于布尔值存储格式与Oracle不同(YashanDB为true/false,Oracle为0/1),导致JDBC写入报错“IS_DURABLE size exceeding limit 1”。此问题影响所有使用Quartz的任务调度场景,需修改字段类型或转换布尔值写入方式解决。建议升级至23.2.0.33版本以获得更好的兼容性,或修改布尔字段为boolean类型。
|
2月前
|
人工智能 机器人 开发工具
LazyLLM:还在为AI应用开发掉头发?商汤开源智能体低代码开发工具,三行代码部署聊天机器人
LazyLLM 是一个低代码开发平台,可帮助开发者快速构建多智能体大语言模型应用,支持一键部署、跨平台操作和多种复杂功能。
96 3
|
20天前
|
SQL 存储 关系型数据库
【YashanDB知识库】共享从 MySQL异常处理CONTINUE HANDLER的改写方法
【YashanDB知识库】共享从 MySQL异常处理CONTINUE HANDLER的改写方法
|
3天前
|
SQL 测试技术 数据库
【YashanDB知识库】IMP跨网络导入慢问题
问题现象:290M数据,本地导入2分钟,跨机导入耗时显著增加(最高30分钟)。 原因分析:`imp`逐条SQL通过网络传输至yashanDB执行,交互频繁导致性能下降。 影响版本:客户测试环境22.2.8.3。 解决方法:将导入文件上传至与yashanDB同机后使用`imp`,减少网络延迟。 经验总结:优化`imp`工具,支持直接上传文件至服务器端执行,降低网络依赖。
|
3天前
|
监控 数据库
【YashanDB 知识库】ycm 托管数据库时报错 OM host ip:127.0.0.1 is not support join to YCM
在托管数据库时,若 OM 的 IP 被设置为 127.0.0.1,将导致无法托管至 YCM,并使数据库失去监控。此问题源于安装时修改了 OM 的监听 IP。解决方法包括:将 OM 的 IP 修改为本机实际 IP 或 0.0.0.0,同时更新 env 文件及 yasom 后台数据库中的相关配置。经验总结指出,应避免非必要的后台 IP 修改,且数据库安装需遵循规范,不使用仅限本机访问的 IP(如 127.0.0.1)。

热门文章

最新文章