开源一个RAG大模型本地知识库问答机器人-ChatWiki

简介: 准备工作再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求• Cpu:最低需要2 Core• RAM:最低需要4GB开始安装ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:

目前大模型非常火爆,很多企业一直想把大模型用在企业的客服中,但是基本上没有太多的成功案例。这个事情,我思考了下

1. 企业的客服服务是非常严谨的,不能乱回答。

比如在电商场景,用户说这个产品是否可以退款, 那大模型如果回答说可以。如果产品价格非常高,比如在1万以上,那么这个产品是不是要退款?损失谁来回答。 所以企业必须要机器人严格按照企业的知识库的要求来,不能乱回答

 

2.企业的资料的保密性

目前的大模型,当你把资料传给大模型的时候,实际上,你把资料也给机器人当做语料去训练机器人了,你的文档就是公开的文档了,这对许多企业来说,基本上不会把敏感资料传给大模型了

还记得之前网上报道过,三星把一个芯片资料传给大模型,导致敏感技术资料泄密的问题。

 

ChatGPT「奶奶漏洞」又火了,扮演过世祖母讲睡前故事,骗出Win11序列号

 

3 大模型从问答,到企业部署到自己的客服渠道,有大多的工作量

 大模型提高了接口,提供了文字问答能力,但是,企业的客户咨询,是从

 1 APP里

 2 公司官网

 3 公众号,小程序,视频号

 4 抖音

 5 小红书

 6 微博

这么渠道,各个场景都要去覆盖,一般的企业根本就没这个开发实力。

 

基于这个想法,我就想做个基于大模型的问答机器人,完全打通小程序客服,微信公众号客服,视频号小店客服,H5APP客服,公司官网,部署简单。这样企业就很方便的部署起来。

我的想法是

方法一:渠道统一管理, 把常用的渠道,全部默认支持到

方法二 :将企业知识库管理简单化

            直接将doc,网址,pdf ,excel 直接上传到,就可以支持基于知识库的问答了。

 

上传的知识库,进行分段embedding操作

 

最后创建机器人,关联这个知识库,就可以对外提供服务了

 

以下是我们的架构图

下面是具体的一些介绍

ChatWiki

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。

能力


1、专属 AI 问答系统

通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。

2、一键接入模型

ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。

3、数据自动预处理

提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。

4、简单易用的使用方式

ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。

5、适配不同业务场景

ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、绑定到微信公众号或小程序、桌面客户端等,可以满足企业不同业务场景使用需求。

开始使用


准备工作

再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求

  • Cpu:最低需要2 Core
  • RAM:最低需要4GB

开始安装

ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:

sudo curl -sSL https://get.docker.com/ | CHANNEL=stable sh

 

安装好Docker后,逐步执行一下步骤安装ChatWiki社区版

(1).克隆或下载chatwiki项目代码

git clone https://github.com/zhimaAi/chatwiki.gitnewsbriefpoundbpress

 

(2).使用Docker Compose构建并启动项目

cd chatwiki/docker

docker compose up -d

部署手册

在安装和部署中有任何问题或者建议,可以联系我们获取帮助,也可以参考下面的文档。

界面


技术架构


技术栈


  • 前端:vue.js
  • 后端:golang +python
  • 数据库:PostgreSQL16+pgvector+zhparser
  • 缓存:redis5.0
  • web服务:nginx
  • 异步队列:nsq
  • 进程管理:supervisor
  • 模型:支持OpenAI、Google Gemini、Claude3、通义千文、文心一言、讯飞星火、百川、腾讯混元等模型。

感兴趣的朋友,可以去我们github https://github.com/zhimaAi/chatwiki地址里点个star, 多谢多谢!

相关文章
|
28天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
84 3
|
28天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI ×LLaMA Factory 框架,基于全参方法微调 Qwen2-VL 模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
|
5天前
|
XML 算法 自动驾驶
ROS进阶:使用URDF和Xacro构建差速轮式机器人模型
【11月更文挑战第7天】本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。
|
30天前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
48 2
|
26天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
72 2
|
28天前
|
人工智能 机器人
多模态大模型活动 | 使用 PAI×LLaMA Factory 搭建文旅问答机器人
LLaMA Factory 是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架,GitHub 星标超过3万。本次活动通过 PAI×LLaMA Factory 微调 Qwen2-VL 模型,快速搭建文旅领域知识问答机器人,期待看到您与 AI 导游的创意对话!
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
|
25天前
|
机器学习/深度学习 数据采集 人工智能
文档智能和检索增强生成(RAG)——构建LLM知识库
本次体验活动聚焦于文档智能与检索增强生成(RAG)结合构建的LLM知识库,重点测试了文档内容清洗、向量化、问答召回及Prompt提供上下文信息的能力。结果显示,系统在自动化处理、处理效率和准确性方面表现出色,但在特定行业术语识别、自定义向量化选项、复杂问题处理和Prompt模板丰富度等方面仍有提升空间。
64 0

热门文章

最新文章