深入解析Elasticsearch的内存架构与管理

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 深入解析Elasticsearch的内存架构与管理

一、Elasticsearch的内存架构概述

Elasticsearch的内存架构主要分为两大部分:堆内存(On-Heap)和堆外内存(Off-Heap)。这两部分内存各有其用途和管理策略,共同支撑着Elasticsearch的高性能和可扩展性。

二、堆内存(On-Heap)详解

堆内存是Elasticsearch JVM进程分配的内存空间,用于存储Java对象。

es使用Lucene作为其底层搜索引擎,但Lucene的某些数据结构并不直接存储在堆内存中,而是存储在堆外内存中。堆内存是垃圾回收(GC)的主要目标,GC会清除不再使用的对象以释放内存空间。

Elasticsearch在堆内存中维护了多个内存池,用于不同类型的数据结构。这些内存池包括索引缓冲区、节点查询缓存、分片请求缓存、字段数据缓存和段缓存等。每个内存池都有其特定的用途和管理策略。


例如,索引缓冲区用于新文档的写入缓冲,当缓冲满时,内容会被刷新到磁盘上的Lucene段中。而字段数据缓存则用于聚合和排序操作,当执行这些操作时,字段数据会被加载到堆内存中。Elasticsearch通过LRU(最近最少使用)算法和其他策略来管理这些内存池的使用,确保重要的操作能够得到足够的内存资源。

2.1 内存池

Elasticsearch在堆内存中维护了多个内存池,用于不同类型的数据结构。这些内存池包括:

  • Indexing Buffer:用于新文档的写入缓冲,当缓冲满时,内容会被刷新到磁盘上的Lucene段中。
  • Node Query Cache:节点级别的查询缓存,用于存储频繁查询的结果。
    Shard Request Cache:分片级别的请求缓存,用于缓存分片级别的搜索结果。
  • Field Data Cache:字段数据缓存,用于聚合和排序操作。当执行这些操作时,字段数据会被加载到堆内存中。
  • Segments Cache:Lucene段的缓存,用于存储已经加载到内存中的Lucene段信息。

2.2 内存管理

Elasticsearch通过LRU(最近最少使用)算法和其他策略来管理内存池的使用。当内存不足时,Elasticsearch会根据需要清除缓存中的数据,以确保重要的操作能够得到足够的内存资源。

三、堆外内存(Off-Heap)探秘

与堆内存不同,堆外内存不由JVM直接管理,而是由Lucene管理。Lucene使用堆外内存来存储其倒排索引和其他数据结构,这些数据结构对于搜索性能至关重要。将部分内存管理交给Lucene处理可以减少垃圾回收对搜索性能的影响,因为Lucene的数据结构通常不需要进行频繁的GC。


此外,堆外内存的使用还可以避免JVM的内存限制,使Elasticsearch能够处理更大的数据集。虽然堆外内存不由JVM直接管理,但Elasticsearch仍然提供了一些工具和设置来监控和调整堆外内存的使用。例如,可以通过配置文件设置Lucene的内存限制,以避免使用过多的系统资源。

四、优化Elasticsearch的内存使用

为了充分发挥Elasticsearch的性能,需要合理配置和优化其内存使用。以下是一些建议:

  1. 合理配置JVM堆大小:根据服务器的物理内存和Elasticsearch的工作负载来合理配置JVM堆的大小。过小的堆可能导致内存不足,而过大的堆可能会增加垃圾回收的开销。建议将JVM堆大小设置为服务器物理内存的一半左右,并留下足够的内存供操作系统和其他进程使用。
  2. 使用合适的缓存策略:根据实际需求调整Elasticsearch的缓存设置。对于频繁查询的数据,可以将其缓存在节点查询缓存或分片请求缓存中,以加快查询速度。对于不常查询的数据,可以将其从缓存中清除,以节省内存空间。
  3. 监控和调整:定期监控Elasticsearch的内存使用情况,并根据实际情况进行调整。可以使用Elasticsearch提供的监控工具或第三方监控解决方案来实现。通过监控,可以及时发现内存泄漏、内存溢出等问题,并采取相应的措施进行解决。

五、总结

Elasticsearch的内存架构是其高性能和可扩展性的重要基础。通过合理配置和优化内存使用,可以确保Elasticsearch在各种工作负载下都能提供稳定、高效的搜索和分析服务。对于Elasticsearch的用户和开发者来说,深入了解其内存架构和管理策略是释放其全部潜能的关键一步。希望本文的内容能为大家提供一些有益的参考和启示。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
打赏
0
0
0
0
40
分享
相关文章
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
153 76
销售易CRM:技术架构与安全性能的深度解析
销售易CRM基于云计算与微服务架构,融合高可用性、弹性扩展及模块化开发优势,为企业提供灵活定制化的客户关系管理解决方案。系统采用多层次安全防护机制,包括数据加密、细粒度权限控制和实时监控审计,确保数据安全与隐私保护。某金融机构的成功案例表明,销售易CRM显著提升了数据安全性和系统性能,同时满足行业合规要求。作为数字化转型的利器,销售易CRM助力企业实现可持续发展与市场竞争力提升。
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
165 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
252 18
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
100 1
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
3月前
|
Spring底层架构核心概念解析
理解 Spring 框架的核心概念对于开发和维护 Spring 应用程序至关重要。IOC 和 AOP 是其两个关键特性,通过依赖注入和面向切面编程实现了高效的模块化和松耦合设计。Spring 容器管理着 Beans 的生命周期和配置,而核心模块为各种应用场景提供了丰富的功能支持。通过全面掌握这些核心概念,开发者可以更加高效地利用 Spring 框架开发企业级应用。
123 18
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
114 0
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
260 0

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等