基于RBF神经网络的自适应控制器simulink建模与仿真

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 使用MATLAB2022a,开发了一个基于RBF神经网络的自适应控制器Simulink S函数,进行了控制仿真。核心程序展示了RBF网络的权重和参数调整。测试结果显示了控制效果。RBF网络是一种三层前馈网络,利用高斯函数处理非线性系统。自适应控制器通过在线调整参数应对系统变化。网络学习分为自组织和有导师两个阶段,通过误差信号调整权重,确保系统稳定性。

1.程序功能描述
在simulink中,使用S函数编写基于RBF神经网络的自适应控制器,然后实现基于RBF神经网络的自适应控制器的控制仿真。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

b00b88b84d03cccb71a2ae1beeee9b91_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
42ba0fd57531cc8f43634c0fadb0c2ed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

0dba8c5763776639db601758ee066d27_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

```function sys=mdlDerivatives(t,x,u)
global node c b
yd=sin(t);
dyd=cos(t);
ddyd=-sin(t);

e=u(1);
de=u(2);
x1=yd-e;
x2=dyd-de;

kp=30;
kd=50;
K=[kpkd]';
E=[e de]';

Fai=[0 1;-kp -kd];
A=Fai';
Q=[500 0;0 500];
P=lyap(A,Q);
W=[x(1) x(2) x(3) x(4) x(5)]';
xi=[e;de];
h=zeros(5,1);
for j=1:1:5
h(j)=exp(-norm(xi-c(:,j))^2/(2b^2));%网络层
end
fxp=W'
h;
mp=x(node+1);
ut=1/mp(-fxp+ddyd+K'E);

B=[0;1];
gama=1200;
S=-gamaE'PBh;
for i=1:1:node
sys(i)=S(i);
end
eta=0.0001;
ml=100;
if (E'PBut>0)
dm=(1/eta)
E'PBut;
end
if (E'
PBut<=0)
if (mp>ml)
dm=(1/eta)E'PBut;
else
dm=1/eta;
end
end
sys(node+1)=dm;
27

```

4.本算法原理
RBF神经网络是一种三层前馈网络,包括输入层、隐藏层和输出层。隐藏层使用径向基函数作为激活函数,常见的径向基函数是高斯函数。RBF神经网络的基本思想是将输入空间映射到一个隐藏层空间,然后在这个空间中进行线性组合以产生输出。

4.1自适应控制器
自适应控制器是一种能够自动调整其参数以响应系统变化或外部扰动的控制系统。在基于RBF神经网络的自适应控制器中,RBF神经网络用于逼近未知的非线性系统动态,而控制器的参数则根据某种自适应律进行在线调整。

4.2 RBF神经网络模型

ca7dea137e1f4c2486b1af8eed85ab7c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    RBF神经网络学习算法需要求解的参数有三个:基函数的中心向量W、方差σ \sigmaσ以及隐含层到输出层的权值。根据选取的径向基函数中心的方法不同,RBF神经网络有不同的学习方式。下面将介绍自组织选取中心的RBF神经网络学习法。该方法由两个阶段组成:一是自组织学习阶段,此阶段为无导师学习过程,求解隐藏层基函数的中心向量与方差;二是有导师学习阶段,此阶段求解隐藏层到输出层之间的权值。自适应律可以设计为使得RBF神经网络的权重和参数根据误差信号进行调整,以最小化跟踪误差。例如,可以采用梯度下降法来更新权重和参数。为了分析控制器的稳定性,通常需要构造一个李雅普诺夫函数(Lyapunov function),并证明该数的时间导数小于零。这可以确保系统状态在控制器的作用下渐近稳定到期望轨迹。

   基于RBF神经网络的自适应控制器是一种强大的非线性控制方法,能够自动调整参数以适应系统变化和外部扰动。通过结合RBF神经网络的逼近能力和自适应控制策略,可以实现良好的跟踪性能和稳定性。然而,详细的理论分析和实现可能需要更深入的研究和实践经验。
相关文章
|
24天前
|
机器学习/深度学习 并行计算 算法
粒子群算法优化RBF神经网络的MATLAB实现
粒子群算法优化RBF神经网络的MATLAB实现
232 123
|
9天前
|
机器学习/深度学习 算法 机器人
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
|
20天前
|
机器学习/深度学习 传感器 分布式计算
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 传感器 算法
毫米波V2I网络的链路层仿真研究(Matlab代码实现)
毫米波V2I网络的链路层仿真研究(Matlab代码实现)
|
1月前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
|
1月前
|
网络协议 Python
水声网络(UAN)仿真的信道建模(Matlab代码实现)
水声网络(UAN)仿真的信道建模(Matlab代码实现)
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
224 17
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
177 10
|
9月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
185 10