基于RBF神经网络的自适应控制器simulink建模与仿真

本文涉及的产品
大数据开发治理平台 DataWorks,不限时长
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 使用MATLAB2022a,开发了一个基于RBF神经网络的自适应控制器Simulink S函数,进行了控制仿真。核心程序展示了RBF网络的权重和参数调整。测试结果显示了控制效果。RBF网络是一种三层前馈网络,利用高斯函数处理非线性系统。自适应控制器通过在线调整参数应对系统变化。网络学习分为自组织和有导师两个阶段,通过误差信号调整权重,确保系统稳定性。

1.程序功能描述
在simulink中,使用S函数编写基于RBF神经网络的自适应控制器,然后实现基于RBF神经网络的自适应控制器的控制仿真。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

b00b88b84d03cccb71a2ae1beeee9b91_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
42ba0fd57531cc8f43634c0fadb0c2ed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

0dba8c5763776639db601758ee066d27_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

```function sys=mdlDerivatives(t,x,u)
global node c b
yd=sin(t);
dyd=cos(t);
ddyd=-sin(t);

e=u(1);
de=u(2);
x1=yd-e;
x2=dyd-de;

kp=30;
kd=50;
K=[kpkd]';
E=[e de]';

Fai=[0 1;-kp -kd];
A=Fai';
Q=[500 0;0 500];
P=lyap(A,Q);
W=[x(1) x(2) x(3) x(4) x(5)]';
xi=[e;de];
h=zeros(5,1);
for j=1:1:5
h(j)=exp(-norm(xi-c(:,j))^2/(2b^2));%网络层
end
fxp=W'
h;
mp=x(node+1);
ut=1/mp(-fxp+ddyd+K'E);

B=[0;1];
gama=1200;
S=-gamaE'PBh;
for i=1:1:node
sys(i)=S(i);
end
eta=0.0001;
ml=100;
if (E'PBut>0)
dm=(1/eta)
E'PBut;
end
if (E'
PBut<=0)
if (mp>ml)
dm=(1/eta)E'PBut;
else
dm=1/eta;
end
end
sys(node+1)=dm;
27

```

4.本算法原理
RBF神经网络是一种三层前馈网络,包括输入层、隐藏层和输出层。隐藏层使用径向基函数作为激活函数,常见的径向基函数是高斯函数。RBF神经网络的基本思想是将输入空间映射到一个隐藏层空间,然后在这个空间中进行线性组合以产生输出。

4.1自适应控制器
自适应控制器是一种能够自动调整其参数以响应系统变化或外部扰动的控制系统。在基于RBF神经网络的自适应控制器中,RBF神经网络用于逼近未知的非线性系统动态,而控制器的参数则根据某种自适应律进行在线调整。

4.2 RBF神经网络模型

ca7dea137e1f4c2486b1af8eed85ab7c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    RBF神经网络学习算法需要求解的参数有三个:基函数的中心向量W、方差σ \sigmaσ以及隐含层到输出层的权值。根据选取的径向基函数中心的方法不同,RBF神经网络有不同的学习方式。下面将介绍自组织选取中心的RBF神经网络学习法。该方法由两个阶段组成:一是自组织学习阶段,此阶段为无导师学习过程,求解隐藏层基函数的中心向量与方差;二是有导师学习阶段,此阶段求解隐藏层到输出层之间的权值。自适应律可以设计为使得RBF神经网络的权重和参数根据误差信号进行调整,以最小化跟踪误差。例如,可以采用梯度下降法来更新权重和参数。为了分析控制器的稳定性,通常需要构造一个李雅普诺夫函数(Lyapunov function),并证明该数的时间导数小于零。这可以确保系统状态在控制器的作用下渐近稳定到期望轨迹。

   基于RBF神经网络的自适应控制器是一种强大的非线性控制方法,能够自动调整参数以适应系统变化和外部扰动。通过结合RBF神经网络的逼近能力和自适应控制策略,可以实现良好的跟踪性能和稳定性。然而,详细的理论分析和实现可能需要更深入的研究和实践经验。
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络
【6月更文挑战第24天】在深度学习的浪潮中,自适应神经网络以其独特的灵活性和高效性引起了研究者的广泛关注。本文将深入探讨自适应神经网络的设计原理、优化算法以及在不同领域的应用案例,揭示其在处理复杂数据模式时的优势与挑战。
|
1天前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
6天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
14天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
23天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
29天前
|
人工智能 自然语言处理 安全
构建未来:AI驱动的自适应网络安全防御系统提升软件测试效率:自动化与持续集成的实践之路
【5月更文挑战第30天】 在数字化时代,网络安全已成为维护信息完整性、保障用户隐私和企业持续运营的关键。传统的安全防御手段,如防火墙和入侵检测系统,面对日益复杂的网络攻击已显得力不从心。本文提出了一种基于人工智能(AI)技术的自适应网络安全防御系统,该系统能够实时分析网络流量,自动识别潜在威胁,并动态调整防御策略以应对未知攻击。通过深度学习算法和自然语言处理技术的结合,系统不仅能够提高检测速度和准确性,还能自主学习和适应新型攻击模式,从而显著提升网络安全防御的效率和智能化水平。 【5月更文挑战第30天】 在快速迭代的软件开发周期中,传统的手动测试方法已不再适应现代高效交付的要求。本文探讨了如
|
8天前
|
机器学习/深度学习 算法 语音技术
基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
**语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。
|
15天前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
30天前
|
机器学习/深度学习 人工智能 安全
构建未来:AI驱动的自适应网络安全防御系统
【5月更文挑战第29天】 随着网络攻击手段的不断演变和升级,传统的基于特征的安全防御机制已不再能够有效地应对日益复杂的安全威胁。本文探讨了如何通过集成人工智能(AI)技术来构建一个自适应的网络安全防御系统,该系统能够在不断变化的网络环境中学习、预测并主动防御未知威胁。通过深度学习算法、实时数据分析和自动化响应策略,这种新型系统旨在提高企业级网络安全的智能化水平,减少人为干预,同时提升防御效率和准确性。
|
15天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】

热门文章

最新文章