【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

简介: 本文提供了2023年第十三届MathorCup高校数学建模挑战赛C题的详细建模方案及代码实现,针对电商物流网络中的包裹应急调运与结构优化问题,提出了包括时间序列分析在内的多种数学模型,并探讨了物流网络的鲁棒性。

相关信息

(1)建模思路

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

(2)完整论文

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题

在这里插入图片描述

1 题目

电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场 地之间的运输线路组成,如图 1 所示。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事 件导致物流场地临时或永久停用时,其处理的包裹将会紧急分流到其他物 流场地,这些因素均会影响到各条线路运输的包裹数量,以及各个物流场 地处理的包裹数量。

在这里插入图片描述

如果能预测各物流场地及线路的包裹数量(以下简称货量),管理者将 可以提前安排运输、分拣等计划,从而降低运营成本,提高运营效率。特别地,在某些场地临时或永久停用时,基于预测结果和各个物流场地的处 理能力及线路的运输能力,设计物流网络调整方案,将会大大降低物流场 地停用对物流网络的影响,保障物流网络的正常运行。

附件 1 给出了某物流网络在 2021-01-01 至 2022-12-31 期间每天不同物流场地之间流转的货量数据,该物流网络有 81 个物流场地,1049 条线路。其中线路是有方向的,比如线路 DC1→DC2 和线路 DC2→DC1 被认为是两条线路。假设每个物流场地的处理能力和每条线路的运输能力上限均为其 历史货量最大值。

基于以上背景,请你们团队完成以下问题:

问题 1:建立线路货量的预测模型,对 2023-01-01 至 2023-01-31 期间 每条线路每天的货量进行预测,并在提交的论文中给出线路 DC14→DC10、DC20→DC35、DC25→DC62 的预测结果。

问题 2:如果物流场地 DC5 于 2023-01-01 开始关停,请在问题 1 的预测基础上,建立数学模型,将 DC5 相关线路的货量分配到其他线路使所有包裹尽可能正常流转,并使得 DC5 关停前后货量发生变化的线路尽可能少, 且保持各条线路的工作负荷尽可能均衡。如果存在部分日期部分货量没有正常流转,你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正常流转的包裹日累计总量尽可能少。正常流转时,请给出因 DC5 关停导致货量发生变化的线路数及网络负荷情况;不能正常流转时,请给出因 DC5 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况。

问题 3:在问题 2 中,如果被关停的物流场地为 DC9,同时允许对物流网络结构进行动态调整(每日均可调整),调整措施为关闭或新开线路,不包含新增物流场地,假设新开线路的运输能力的上限为已有线路运输能力的最大值。请将 DC9 相关线路的货量分配到其他线路,使所有包裹尽可能正常流转,并使得 DC9 关停前后货量发生变化的线路数尽可能少,且保持各条线路的工作负荷尽可能均衡。如果存在部分日期没有满足要求的流转方案,你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正常流转的包裹日累计总量尽可能少。正常流转时,请给出因 DC9 关停导致货量发生变化的线路数及网络负荷情况;不能正常流转时,请给出因 DC9 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况; 同时请给出每天的线路增减情况。

问题 4:根据附件 1,请对该网络的不同物流场地及线路的重要性进行评价;为了改善网络性能,如果打算新增物流场地及线路,结合问题 1 的预测结果,探讨分析新增物流场地应与哪几个已有物流场地之间新增线路, 新增物流场地的处理能力及新增线路的运输能力应如何设置?考虑到预测结果的随机性,请进一步探讨你们所建网络的鲁棒性。

2 方案解析

2.1 问题一

针对第一个问题,我们可以采用时间序列分析方法来建立线路货量的预测模型。具体的步骤如下:

  1. 数据预处理:将附件1中的数据按照时间顺序进行排序,并将其转换为时间序列数据。
  2. 时间序列分解:对时间序列数据进行季节性、趋势性和随机性分解,以便更好地理解其内部结构。
  3. 模型选择:基于时间序列的性质和内部结构,选择适当的时间序列模型,例如ARIMA、ARIMAX等。
  4. 参数估计:利用最大似然估计方法或贝叶斯估计方法,估计所选模型的参数。
  5. 模型诊断:对所建立的模型进行诊断,检验其残差是否符合一些假设条件,例如均值为零、独立等。
  6. 模型预测:利用建立好的模型,对未来一段时间内每条线路每天的货量进行预测。

针对题目要求,需要对2023年1月1日至1月31日期间每条线路每天的货量进行预测,并给出线路DC14→DC10、DC20→DC35、DC25→DC62的预测结果。因此,需要根据附件1中的数据,建立时间序列模型,并利用该模型进行预测。

问题二

针对这个问题,需要重新调整第一问中的预测模型,将 DC5 相关线路的货量分配到其他线路,使得所有包裹尽可能正常流转,且保持各条线路的工作负荷尽可能均衡。可以考虑以下步骤:

  1. 计算 DC5 相关线路的平均每日货量,以及 DC5 关停前的天数。
  2. 将 DC5 相关线路的平均每日货量按照关停前的天数进行加权平均,得到一个平均每日需要分配的货量。
  3. 将 DC5 相关线路的货量分配到其他线路,使得所有包裹尽可能正常流转,并使得各条线路的工作负荷尽可能均衡。这个过程可以使用线性规划等数学模型进行求解。
  4. 重新预测分配后的各条线路的货量,得到 DC5 关停后的货量情况。
  5. 对于正常流转的情况,
  6. 对于不能正常流转的情况,
  7. 最后,对于不能正常流转的情况,
    。。。略,请下载完整文档

需要注意的是,在以上步骤中,我们需要考虑一些约束条件,例如各条线路的工作负荷均衡、每个包裹只能被分配一次等。同时,我们也需要根据具体情况进行调整和优化,以求得最优解。

问题三

为了解决这个问题,需要对物流网络进行重新规划,以最小化对货量的影响,同时尽可能均衡线路的工作负荷。以下是一个可能的解决方案:

  1. 确定DC9关停前的货量分配情况,
  2. 将DC9的货量平均分配到其他线路上,
  3. 对于每个物流线路,
  4. 对于不能正常流转的包裹,

具体步骤如下:

。。。略,请下载完整文档

问题四

对于该物流网络的不同场地及线路的重要性评价,可以考虑以下几个因素:

  1. 交通便捷程度
  2. 场地面积及容量
  3. 。。。略,请下载完整文档

对于该网络的鲁棒性,可以考虑以下几个方面:

  1. 可扩展性:
  2. 风险控制:
  3. 多样化:
  4. 技术支持:
  5. 管理规范:

3 代码实现

% 我将附件1中的列名,全部重命名了的

% 导入时间序列分解工具包
addpath(fullfile(matlabroot,'toolbox','econ','econ'))

% site1    site    date    goods
% 读取数据文件
data = readtable('附件1:物流网络历史货量数据.xlsx');

% 对数据按照日期进行排序
data = sortrows(data, 'date');

% 将数据转换为时间序列数据
date_str = string(data.date);
date_num = datenum(date_str, 'yyyy-mm-dd');
ts_data = timeseries(data.goods, date_num);
ts_data.TimeInfo.Format = 'yyyy-mm-dd';

% 对时间序列进行季节性、趋势性和随机性分解
decomposition = decompose(ts_data,ts_data.Data, 'additive', 12);

% 绘制原始时间序列、趋势、季节和随机分量的图形
figure;
subplot(4,1,1);
plot(ts_data);
title('原始时间序列');
subplot(4,1,2);
plot(decomposition.trend);
title('趋势分量');
subplot(4,1,3);
plot(decomposition.seasonal);
title('季节分量');
subplot(4,1,4);
plot(decomposition.random);
title('随机分量');

% 选择ARIMA模型并进行参数估计
model = arima('Seasonality',12,'D',1,'S',12,'MALags',1,'SMALags',1);
[estimates,~,logL] = estimate(model,ts_data);

% 对模型进行诊断检验
。。。略请下载完整代码

% 输出预测结果
。。。略请下载完整代码

4 下载

电脑浏览器打开:betterbench.top/#/57/detail
有任何问题,请Q我823316627

目录
相关文章
|
6月前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
121 5
|
2天前
|
Cloud Native 区块链 数据中心
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
18 1
|
25天前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
|
1月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
83 22
|
4月前
|
Web App开发 监控 网络协议
网络分析与监控:阿里云拨测方案解密
阿里云网络拨测业务提供了全球、多种协议、多种网络态势的用户网络性能和用户体验监控场景的全面可观测方案。该文章从拨测场景下,介绍了用户如何快速的构建一套全球用户视角的服务可用性大盘,为客户的业务保驾护航。
734 105
|
7月前
|
安全 网络架构
MPLS线路构建稳定、高效网络的优选方案
【10月更文挑战第17天】MPLS线路构建稳定、高效网络的优选方案
140 5
|
5月前
|
机器学习/深度学习 网络架构
揭示Transformer重要缺陷!北大提出傅里叶分析神经网络FAN,填补周期性特征建模缺陷
近年来,神经网络在MLP和Transformer等模型上取得显著进展,但在处理周期性特征时存在缺陷。北京大学提出傅里叶分析网络(FAN),基于傅里叶分析建模周期性现象。FAN具有更少的参数、更好的周期性建模能力和广泛的应用范围,在符号公式表示、时间序列预测和语言建模等任务中表现出色。实验表明,FAN能更好地理解周期性特征,超越现有模型。论文链接:https://arxiv.org/pdf/2410.02675.pdf
183 68
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
揭示Transformer周期建模缺陷!北大提出新型神经网络FAN,填补周期性特征建模能力缺陷
北京大学研究团队发现,Transformer等主流神经网络在周期特征建模方面存在缺陷,如记忆数据模式而非理解内在规律,导致泛化能力受限。为此,团队提出基于傅里叶分析的Fourier Analysis Network(FAN),通过显式建模周期性特征,提升模型的理解和预测能力,减少参数和计算量,并在多个实验中验证其优越性。论文链接:https://arxiv.org/pdf/2410.02675.pdf
100 3
|
4月前
|
机器学习/深度学习 数据采集 人工智能
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
GeneralDyG 是南洋理工大学推出的通用动态图异常检测方法,通过时间 ego-graph 采样、图神经网络和时间感知 Transformer 模块,有效应对数据多样性、动态特征捕捉和计算成本高等挑战。
137 18
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全