逻辑回归的介绍
逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。
而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。
逻辑回归模型的优劣势:
优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
缺点:容易欠拟合,分类精度可能不高
1.1 逻辑回归的应用
逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。
Demo实践
Step1:库函数导入
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression
Step2:模型训练
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]]) y_label = np.array([0, 0, 0, 1, 1, 1]) lr_clf = LogisticRegression() lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
Step3:模型参数查看
print('the weight of Logistic Regression:',lr_clf.coef_) print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
Step4:数据和模型可视化
plt.figure() plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') plt.show()
plt.figure() plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny)) z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()]) z_proba = z_proba[:, 1].reshape(x_grid.shape) plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue') plt.show()
plt.figure() x_fearures_new1 = np.array([[0, -1]]) plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis') plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red')) x_fearures_new2 = np.array([[1, 2]]) plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis') plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red')) plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue') plt.show()
Step5:模型预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1) y_label_new2_predict = lr_clf.predict(x_fearures_new2) print('The New point 1 predict class:\n',y_label_new1_predict) print('The New point 2 predict class:\n',y_label_new2_predict) y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1) y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2) print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba) print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。
逻辑回归 原理简介:
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:l
其对应的函数图像可以表示如下:
import numpy as np import matplotlib.pyplot as plt x = np.arange(-5,5,0.01) y = 1/(1+np.exp(-x)) plt.plot(x,y) plt.xlabel('z') plt.ylabel('y') plt.grid() plt.show()
通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且logi(⋅)函数的取值范围为(0,1)(0,1)
对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的w 从而得到一个针对于当前数据的特征逻辑回归模型。
而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。