Python streamlit框架开发数据分析网站并免费部署

简介: 使用Python的Streamlit框架,开发了一个在线数据分析工具,替代Excel查看设备温度CSV数据。通过pandas读取数据,matplotlib绘制图表。程序处理CSV,提取所需列,计算最大最小平均值,用户可多选查看特定数据。[GitHub](https://github.com/yigedaigua/MGHB)上有完整代码,应用已部署至Streamlit Cloud。

近期公司有一个需求,将设备导出的温度数据,使用线上的方式进行分析,取代原先使用Excel的方式分析查看图表,看了python的streamlit web框架,符合此次开发需求,可以快速开发

1.数据分析思路

查看分析设备数据

设备导出的数据为CSV文件,从第14行开始为温度数据,数据使用科学计数表示,数据之间使用“逗号分隔”,数据组织较为简单

image-20240311102845129.png

2.程序开发思路

根据对CSV温度数据的分析,如此我们可以使用“pandas”库来读取所有数据,并将科学计数的数据转换为10进制表示,将转换完的数据使用图表matplotlib库展示出来即可,

3.开发

import streamlit as st
import pandas as pd
from dataprocessing import dataprocessing,datatimeSubdatatime,max_min_avg_stand
import matplotlib.pyplot as plt

import streamlit as st:导入streamlit 框架包,

import pandas as pd:读取分析CSV数据

from dataprocessing import dataprocessing,datatimeSubdatatime,max_min_avg_stand:分析时间,分析数据取最大值最小值等

import matplotlib.pyplot as plt:图表显示库

3.1 主要程序

根据对CSV文件的分析,我们使用Python中的列表存储数据,方便我们对数据进行筛选

#开始处理CSV文件并显示
# 读取CSV文件
my_bar = st.progress(0)
my_bar.progress(10, text="开始读取CSV文件")
data = pd.read_csv(uploaded_files, encoding='utf16', skiprows=13)
# 获取行数
lines = data.values.shape
print(lines)
# 提取第一行数据并去除分号
infolist = []
my_bar.progress(12, text="开始分析CSV文件")
for i in range(lines[0]):
  newinfolist = []
  cleaned_data = str(data.values[i][0]).split(';')

  # 打印清洗后的数据
  # HB时间
  HBdata = f"{cleaned_data[0]}:{cleaned_data[1]}"
  # 设定温度(电流)
  temperature = dataprocessing(cleaned_data[2])
  # 正线
  Mainline = dataprocessing(cleaned_data[3])
  # 回流管
  Returnline = dataprocessing(cleaned_data[4])
  # 流量
  Flowrate = dataprocessing(cleaned_data[11])
  # 系统压力
  Systempressure = dataprocessing(cleaned_data[14])
  # 调节比率
  Regulationratio = dataprocessing(cleaned_data[9])
  # 设定值系统压力
  Setvaluesystempressure = dataprocessing(cleaned_data[13])
  # 泵压差
  Pumppressuredifferential = dataprocessing(cleaned_data[16])
  newinfolist.append(HBdata)
  newinfolist.append(temperature)
  newinfolist.append(Returnline)
  newinfolist.append(Flowrate)
  newinfolist.append(Systempressure)
  newinfolist.append(Mainline)
  newinfolist.append(Regulationratio)
  newinfolist.append(Setvaluesystempressure)
  newinfolist.append(Pumppressuredifferential)
  infolist.append(newinfolist)

数据展示示例

 ['2023-07-06:21:52:03', 40.0,39.3, 10.0,   0.7,   38.6,   0.7,        0,       0.1]

有了列表组成的数据,那么我们对其进行找出最大值最小值就容易多了

如求出最大值,下面这个函数,将我们需要分析的列表数据的索引传到里面,并将所有数据也传进去,将返回最大值,最小值等

Settempervalue = max_min_avg_stand(1,infolist)
def max_min_avg_stand(index:int,infolist):
    # 计算每个子列表中第二个元素的最大值
    max_values = max(sublist[index] for sublist in infolist)
    # 计算每个子列表中第二个元素的最小值
    min_values = min(sublist[index] for sublist in infolist)
    # 计算平均值
    average_value = sum(sublist[index] for sublist in infolist) / len(infolist)
    # 提取第二个元素到一个列表中
    second_elements = [sublist[index] for sublist in infolist]
    # 计算标准差
    standard_deviation = np.std(second_elements)
    # 输出结果
    return [max_values, min_values, average_value,standard_deviation]

还需要实现一个功能,就是人员选择什么就是就在图表中显示什么数据,

那么我们使用streamlit框架创建一个多选框,多选框会返回一个数据,包含索引和“”列名

options = st.multiselect(
        '请选择需要查看的数据',
        ['Set temperature(current)', 'Return line', 'Flow rate', 'System pressure', 'Main line', 'Regulation ratio',
         'Set value system pressure', 'Pump pressure differential'],
        ['Set temperature(current)'])

我们再次声明一个空列表,将选择的数据名称放入其中,已便后续对已选择的数据做判断

    for count in range(len(options)):
        optionslist.append(options[count])

判断已选择的数据是否存在,存在则在图表中创建相关数据图

 if "Set temperature(current)" in optionslist:
                ax.plot(xlist, ylist, color='#000000', label='Set temperature(current)')

至此,主要代码逻辑完成

展示效果:地址:Streamlit (mgghbcsv.streamlit.app)

全部代码地址:GitHub - yigedaigua/MGHB: 这是一个通过python Steamlit框架开发的HB模温机数据分析Web

image-20240311120032592

4.部署

官方提供了免费的部署,速度还行,

需要注意:

需要将代码上传至GitHub,并在代码中包含requirements.txt所有依赖信息,

使用命令“pip freeze > requirements.txt”生成

官方部署:Streamlit • A faster way to build and share data apps

相关文章
|
5天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
23 7
|
2天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
15 2
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
72 4
数据分析的 10 个最佳 Python 库
|
12天前
|
存储 API 数据库
使用Python开发获取商品销量详情API接口
本文介绍了使用Python开发获取商品销量详情的API接口方法,涵盖API接口概述、技术选型(Flask与FastAPI)、环境准备、API接口创建及调用淘宝开放平台API等内容。通过示例代码,详细说明了如何构建和调用API,以及开发过程中需要注意的事项,如数据库连接、API权限、错误处理、安全性和性能优化等。
58 5
|
18天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
25天前
|
机器学习/深度学习 人工智能 关系型数据库
Python开发
Python开发
40 7
|
24天前
|
JSON API 数据格式
如何使用Python开发天猫获得淘宝买家秀API接口?
本文介绍了如何使用Python开发天猫和淘宝买家秀API接口,包括注册开放平台账号、创建应用获取API权限、构建请求URL、发送请求获取响应及解析数据等步骤,帮助开发者高效获取和处理商品信息与用户评价数据。
25 0
|
应用服务中间件 Python
python应用部署--flask
首先必须吐槽一下,python应用部署简直就是有毒。。。太麻烦了。关键还不能成功部署。 网上很多教程都是说要用nginx和uwsgi。来来回回试了无数次都不行。于是乎,在某一个瞬间,灵感以来,发现了一个算得上办法的办法。
934 0
|
17天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
15天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
下一篇
DataWorks