【后端面经】【NoSQL】ElasticSearch - 1 -2 Translog + Elasticsearch索引与分片 + 面试准备

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【6月更文挑战第15天】Elasticsearch利用Translog确保数据安全,类比MySQL的redo log,它在内存缓冲后记录Translog,每隔5秒持久化磁盘,提供高效且顺序的写入。尽管如此,仍可能最多丢失5秒数据。索引由分片组成,每个分片有主从结构,分布于不同节点以降低故障影响。当主分片失败,主节点会选择新主分片。面试中可讨论公司如何使用Elasticsearch、其性能、索引设计、可用性策略及解决过的挑战。常见问题涉及Elasticsearch的应用场景、问题解决及写入流程。

Translog

Elasticsearch在写入的时候,还要写入Translog。可以把这个看作是MySQL里和redo log差不多的东西,如果宕机了可以通过Translog来恢复数据。

MySQL写入的时候,修改了内存里的值,然后记录了日志,也就是binlog、redo log和undo log

Elasticsearch写入的时候,也是写入了Buffer里,然后记录了Translog

两者的区别是:Translog是固定间隔刷新到磁盘上的,默认是5秒。
2024-06-24-20-33-37-image.png

Translog是只追加的,也就是顺序写的,所以效率很高。只有刷新到磁盘的时候,才会非常慢。

但是,就算有Translog,还是有数据丢失的可能,最差情况下,会丢失5秒的数据。

Elasticsearch索引与分片

一个Elasticsearch的索引并不仅仅指倒排索引,还包括了对应的文档。这个和关系型数据库下的语义是不同的。

Elasticsearch的一个索引有多个分片,每个分片又有主从结构,类似于数据库的分库分表。可以这样理解:

  • 一个索引是一个逻辑表

  • 分片就是分库分表

  • 每个分片都有主从结构,在分库分表里面,一般也是用主从集群来存储数据

2024-06-24-20-37-09-image.png

Elasticsearch会尽量把分片分散在不同的节点上,这一点和kafka尽量把分区分散在不同broker上是一样的,为了保证在节点崩溃的时候将影响最小化

主分片崩溃后,是怎么选出新的主分片呢?

主节点选择一个分片作为主分片,类似于Redis Sentinel里的机制,如果主节点宕机了,Sentinel会从节点里选出一个作为主节点

面试准备

  • 公司有没有使用Elasticsearch,用来解决什么问题?

  • Elasticsearch性能怎么样?读写流量多大?存储数据量多大?

  • 创建的索引有多大?有多少个分片?如何确定分片数量的?

  • 有没有采用一些措施来保证Elasticsearch的可用性?有没有用过Elasticsearch的网关?

  • Elasticsearch有没有出过问题?如何解决的?

项目介绍的时候也可以强调一下项目可用性的一个关键点就是Elasticsearch,从而打开话题。面试的时候可以收集一些使用Elasticsearch的基本案例,这样面试讲到一些理论的时候,也可以用这些案例来佐证。

和Elasticsearch相关的面试题目有很多,比如:

  • 有没有用过Elasticsearch?用来解决什么问题

  • 用Elasticsearch的过程中,有没有遇到过什么问题?最后是如何解决的?

  • 为什么Elasticsearch是近实时的?

  • Elasticsearch的flush指的是什么?refresh又是什么?

  • Elasticsearch的写入过程是什么样的?

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
3月前
|
缓存 Java 关系型数据库
【Java面试题汇总】ElasticSearch篇(2023版)
倒排索引、MySQL和ES一致性、ES近实时、ES集群的节点、分片、搭建、脑裂、调优。
【Java面试题汇总】ElasticSearch篇(2023版)
|
2月前
|
存储 安全 Java
每日大厂面试题大汇总 —— 今日的是“美团-后端开发-一面”
文章汇总了美团后端开发一面的面试题目,内容涉及哈希表、HashMap、二叉树遍历、数据库索引、死锁、事务隔离级别、Java对象相等性、多态、线程池拒绝策略、CAS、设计模式、Spring事务传播机制及RPC序列化工具等。
63 0
|
3月前
|
存储 负载均衡 Java
Elasticsearch集群面试系列文章一
【9月更文挑战第9天】Elasticsearch(简称ES)是一种基于Lucene构建的分布式搜索和分析引擎,广泛用于全文搜索、结构化搜索、分析以及日志实时分析等场景。
113 7
|
2月前
|
存储 消息中间件 NoSQL
每日大厂面试题大汇总 —— 今日的是“京东-后端开发-一面”
文章汇总了京东后端开发一面的面试题目,包括ArrayList与LinkedList的区别、HashMap的数据结构和操作、线程安全问题、线程池参数、MySQL存储引擎、Redis性能和线程模型、分布式锁处理、HTTP与HTTPS、Kafka等方面的问题。
142 0
|
1月前
|
存储 索引
Elasticsearch分片和副本
【11月更文挑战第4天】
50 7
|
1月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
2月前
|
存储 关系型数据库 MySQL
贝壳面试:什么是回表?什么是索引下推?
在40岁老架构师尼恩的读者交流群中,近期有成员获得了得物、阿里、滴滴等一线互联网企业的面试机会,遇到了诸如“MySQL索引下推”、“回表查询”等重要面试题。由于缺乏准备,部分成员未能通过面试。为此,尼恩系统地整理了相关知识点,帮助大家提升技术实力,顺利通过面试。具体内容包括MySQL的架构、回表查询的工作原理及其性能问题、索引下推的底层原理和优势等。此外,尼恩还提供了优化建议和实战案例,帮助大家更好地理解和应用这些技术。尼恩的技术资料《尼恩Java面试宝典PDF》也收录了这些内容,供后续参考。
贝壳面试:什么是回表?什么是索引下推?
|
2月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
57 4
|
2月前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。