【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)

简介: 【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)


功能演示

摘要:图像风格迁移(Image Style Transfer)是一种将一张图像的风格应用到另一张图像上的技术。本文详细介绍了其实现的技术原理,同时给出完整的Python实现代码、训练好的Pt模型,并且通过PyQT实现了UI界面,更方便进行功能的展示。图片风格转换系统主要实现了3种风格的图片转移模型(可以自己训练喜欢的风格模型),只需要载入要进行风格转化的图片,并选择自己喜欢的风格,就可以立即得到转化后的图片效果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。


前言

图像风格迁移(Image Style Transfer)是一种将一张图像的风格应用到另一张图像上的技术。具体来说,它将一张包含艺术风格的图像作为输入(称为"风格图片"),并将其应用到一张包含内容的图像(称为"内容图片")上,以生成一张新的图像,该图像保留了原始内容图片的内容,但具有风格图片的艺术风格。它是一种深度学习技术,利用了卷积神经网络的特征提取能力。通常使用预训练的卷积神经网络,如VGG网络,以提取输入图像的特征表示。然后,通过最小化内容图片和风格图片的特征表示之间的差异,以及保持生成图像与内容图片之间的相似度,生成新的图像。图像风格迁移可以应用于许多场景,如图像编辑、艺术创作、视频处理等,它是计算机视觉领域中的热门研究方向之一。

下面是博主设计的简洁软件界面,能够实现目标图片的风格选择,并且快速的将目标图片转换为指定风格并进行展示,还提供了图片保存功能。感兴趣的小伙伴可以自己试试。

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

初始界面如下图:

图片载入并选择图片风格之后,点击风格转换转换之后,界面如下:(然后点击保存图片,可以将转换后的风格图片保存至默认目录)

一、效果演示

(1)图片风格转移

点击载入图片,默认图片风格为梵高风格,点击风格转换,即可在右边显示出转换后的图片。

(2)更改图片风格

这里提供了3种预训练好的图片风格模型进行选择,通过下拉框选择指定的风格,然后点击风格转换即可。点击保存图片,即可将风格迁移后的图片进行保存。

二、图片迁移原理介绍

1.基本原理

本文主要利用的是基于神经网络的风格转换(Neural style transfer)技术:是一种基于离线模型优化的快速图像风格化迁移算法。核心思想就是利用基于离线模型优化的快速图像重建方法来节省时间。具体来说就是预训练一个前向网络,使得图像经过一次前向计算就可以得到图像重建结果,在依据各自约束来优化这一结果。根据一个训练好的前向网络能够学习到多少个风格作为分类依据,这里可以将这一类算法再细分为单模型单风格(PSPM)、单模型多风格(MSPM)和单模型任意风格(ASPM)的快速风格化迁移算法。

本文使用的是单模型单风格(PSPM)的方式,即基于某一种图片风格以VGG网络为backbone,训练好相应风格的预训练模型,然后可以直接使用该训练好的模型对于图片进行快速的风格迁移。基本原理见下图:

更多原理介绍可参考:https://blog.csdn.net/qq_39297053/article/details/120453246

2.训练模型

可以在自己的输入样式图像上训练自定义模型。为此,需要一个内容图像数据集来进行训练:例如MS-COCO 2014 数据集。

启动训方式,按以下方式运行train.py脚本:

python train.py --dataset_path [PATH_TO_DATASET] --style_image_path [PATH_TO_STYLE_IMAGE]

具体示例如下:

python train.py \
  --dataset_path ms-coco \
  --style_image_path images/style/1.jpg \
  --batch_size 8 \
  --lambda_style 200

dataset_path:包含训练集和验证集的文件夹的路径。该文件夹的结构应如下所示:

train.py的参数说明:

style_image_path:目标样式图像的路径。

root_logdir:保存模型快照和 TensorBoard 日志的根目录。默认=“模型”。

weights_snapshot_path:模型权重快照的路径。在恢复以前的培训工作时使用。默认 = ‘’。

lambda_content:内容项在总损失中的权重。经验上好的范围:1 - 100。默认值 = 10。

lambda_style:样式项在总损失中的权重。经验上好的范围:10 - 100,000。默认值 = 100。

lambda_tv:生成图像的总变化在总损失中的权重。经验上好的范围:0 - 1,000。默认值 = 10。

learning_rate:优化过程中每一步的大小。默认值 = 1e-3。

epochs:要执行的训练时期数。默认值 = 2。

content_block_weights:每个卷积块在内容损失中的权重。这五个数字指的是VGG19模型的以下五个激活:conv1_1、conv2_1、conv3_1、conv4_1、conv5_1。默认值 = (0.0, 1.0, 0.0, 0.0, 0.0)。

style_block_weights:样式损失中每个卷积块的权重。这五个数字指的是VGG19模型的以下五个激活:conv1_1、conv2_1、conv3_1、conv4_1、conv5_1。默认 = (1/5, 1/5, 1/5, 1/5, 1/5)。

input_images_dim:模型输入图像的维度。默认值 = 256。

visualization_interval:间隔(训练迭代次数),之后程式化图像的中间结果将在 TensorBoard 中可视化。默认值 = 50。

snapshot_interval:间隔(训练迭代次数),之后模型的中间快照将被保存到磁盘。默认值 = 1000。

batch_size:用于每次训练迭代的小批量大小。默认值 = 4。

num_data_loader_workers:用于在后台从数据集中加载图像的工作人员数量。默认值 = 5。

3.模型使用方法

命令行方式:

python run.py [PATH_TO_PRETRAINED_MODEL] [PATH_TO_CONTENT_IMAGE] [PATH_TO_STYLIZED_OUTPUT]

编程方式:

import image_utils
from stylize import Stylizer
stylizer = Stylizer('models/style1.pt')
image = image_utils.load('images/content/1.jpg')
stylized = stylizer.stylize(image)
image_utils.save(stylized, f'images/stylized/style1/1.jpg')

4.风格迁移示例

相关文章
|
18天前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
80 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
21天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
200 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
25天前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
275 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
18天前
|
数据采集 存储 数据可视化
2025python实战:利用海外代理IP验证广告投放效果
本文介绍了如何利用Python结合海外代理IP技术,验证广告在不同国家的实际投放效果。通过模拟各地网络环境访问广告页面,检查内容是否与计划一致,并生成曝光报告。具体实现包括:获取高质量代理IP、使用Selenium或Playwright模拟用户行为、解析广告内容及生成可视化报告。案例显示,该方法能有效确保广告精准投放,优化策略并节省预算。
|
2月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
405 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
5月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
231 22
|
6月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
456 6
|
2月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
|
4月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
141 40
|
4月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
204 6

推荐镜像

更多