【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列

简介: 【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列

组合总和1

class Solution:

    def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:

        def DFS(candidates,target,start,track):

            if sum(track) == target:

                res.append(track.copy())

                return

            if sum(track) > target:

                return

            for i in range(start,len(candidates)):

                track.append(candidates[i])

                DFS(candidates,target, i, track)

                track.pop()

        res =[]

        DFS(candidates,target,0,[])

        return res

元素可以重复使用,进入下一层时从i开始。元素不能重复使用时,进入下一层时从i+1卡开始。

组合总和2

class Solution:
    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
        def DFS(candidates, target,start, track):
            if sum(track) > target:
                return 
            if sum(track) == target:
                res.append(track.copy())
            for i in range(start,len(candidates)):
# 忽略掉同一层中重复的选项,上述for循环为本层的可选择列表
                if i - 1 >= start and candidates[i-1] == candidates[i]:
                    continue
                track.append(candidates[i])
                DFS(candidates, target,i+1,track)
                track.pop()
        res = []
        candidates.sort()
        DFS(candidates,target,0,[])
        return res

注:当题目中说明所给序列可能包含重复的组合或者子集时,解题套路是要先对原数组进行排序,并且在回溯的写法中,要加上对重复元素跳过的判断,即:

# if(i>startIndex)
# {
    # if(candidates[i]==candidates[i-1])
        # continue;
# }
# 其它的写题做法和回溯是一样的,可以加上剪枝判断,回溯中也要对sum一并进行回溯。
#for 循环枚举出选项时,加入下面判断,忽略掉同一层重复的选项,避免产生重复的组合。比如[1,2,2,2,5]中,选了第一个 2,变成 [1,2],第一个 2 的下一选项也是 2,跳过它,因为选它,就还是 [1,2]

关键总结:

  1. 如果元素可以重复使用,进入下一层时从i开始。元素不能重复使用时,进入下一层时从i+1开始。
  2. 当题目中说明所给序列可能包含重复的组合或者子集时,解题套路是要先对原数组进行排序,并且在回溯的写法中,要加上对重复元素跳过的判断

全排列1

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, track):
            if len(nums) == len(track):
                res.append(track.copy())
                return
            for i in nums:
                # 排除不合法的选择,即不能选择已经在track中的元素
                if i in track:
                    continue
                track.append(i)
                backtrack(nums, track)
                track.pop()
        res = []
        backtrack(nums,[])
        return res

全排列问题1与组合问题1的主要差别在于:

1.是否需要使用start参数来进行下一层开始选择元素的标识。

2.全排列问题,需要if i in track: continue,剔除上次选择的元素。

全排列2

class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def DFS(nums,track,used):
            if len(track) == len(nums):
                res.append(track.copy())
                return
            for i in range(len(nums)):    #https://leetcode-cn.com/problems/permutations-ii/solution/47-quan-pai-lie-iiche-di-li-jie-pai-lie-zhong-de-q/
                #这里理解used[i - 1]非常重要
            # // used[i - 1] == true,说明同一树枝上nums[i - 1]使用过,在同一个递归栈内,试用过的都是Ture
            # // used[i - 1] == false,说明同一树层nums[i - 1]使用过,因为回溯会使上一个元素重新变为False
            # // 如果同一树层nums[i - 1]使用过则直接跳过
                if i > 0 and nums[i] == nums[i-1] and used[i-1] == False:
                    continue
                if used[i] == False:
                    used[i] = True
                    track.append(nums[i])
                    DFS(nums,track,used)
                    track.pop()
                    used[i] = False
        res = []
        nums.sort()
        used = [False for i in range(len(nums))]
        DFS(nums,[],used)
        return res

注:上述组合总和2与全排列2,去重的条件有一点点差别,主要原因是排列的话需要考虑前后位置差异,而组合的话不需要考虑位置差异。

组合的去重条件:

# 忽略掉同一层中重复的选项,上述for循环为本层的可选择列表
if i - 1 >= start and candidates[i-1] == candidates[i]:
排列的去重条件:
if i > 0 and nums[i] == nums[i-1] and used[i-1] == False:

彻底理解排列中的去重问题】详解

思路

这道题目和46.全排列的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。

这里就涉及到去重了。

要注意全排列是要取树的叶子节点的,如果是子集问题,就取树上的所有节点。

这个去重为什么很难理解呢,所谓去重,其实就是使用过的元素不能重复选取 这么一说好像很简单!

但是什么又是“使用过”,我们把排列问题抽象为树形结构之后,“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。

没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。

那么排列问题,既可以在 同一树层上的“使用过”来去重,也可以在同一树枝上的“使用过”来去重!

理解这一本质,很多疑点就迎刃而解了。

还要强调的是去重一定要对元素经行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

首先把示例中的 [1,1,2] (为了方便举例,已经排序),抽象为一棵树,然后在同一树层上对nums[i-1]使用过的话,进行去重如图:

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}
可是如果把 used[i - 1] == true 也是正确的,去重代码如下:
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用用used[i - 1] == true。

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

树枝上去重(used[i - 1] == true)的树型结构如下:

大家应该很清晰的看到,树层上去重非常彻底,效率很高,树枝上去重虽然最后可能得到答案,但是多做了很多无用搜索。

子集(组合问题

class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, track, start):
            res.append(track.copy())
            if start >= len(nums):
                return 
            for i in range(start, len(nums)):
                track.append(nums[i])
                backtrack(nums, track, i + 1)
                track.pop()
        res = []
        backtrack(nums, [], 0)
        return res

子集2(组合问题)

class Solution:
    def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, start, track):
            res.append(track.copy())
            for i in range(start, len(nums)):
                if i-1>=start and nums[i]==nums[i-1]: # 同层去重
                    continue
                track.append(nums[i])
                backtrack(nums,i+1,track)
                track.pop()
        res= []
        nums.sort()
        backtrack(nums,0,[])
        return res

字符串排列排列问题且涉及去重

原始字符串可能存在重复字符’aab’---‘aba’,’baa’

class Solution:

    def permutation(self, s: str) -> List[str]:

        def backtrack(s, cur_s):

            if len(cur_s) == len(s):

                res.append(cur_s)

                return

            for i in range(len(s)):

                if i > 0 and s[i] == s[i-1] and visited[i-1] == False: #同层去重

                    continue

                if visited[i] == False:

                    visited[i] = True

                    backtrack(s, cur_s + s[i])

                    visited[i] = False

        res = []

        visited = [False for _ in range(len(s))]

        s = ''.join(sorted(list(s)))

        backtrack(s,'')

        return res

写法二

class Solution:

    def permutation(self, s: str) -> List[str]:

        def backtrack(s, path):

            if not s:

                res.append(path)

            seen = set()

            for i in range(len(s)):

                if s[i] in seen: continue   # 同层去重

                seen.add(s[i])

#传递的字符串去除了当前选择的字符s[:i]+s[i+1:]

                backtrack(s[:i]+s[i+1:], path + s[i])

        res = []

        backtrack(s, "")

        return res


相关文章
|
7天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
2天前
|
存储 算法 搜索推荐
力扣每日一题 6/13 反悔贪心算法
力扣每日一题 6/13 反悔贪心算法
7 1
|
12天前
|
算法 Java
[Java·算法·简单] LeetCode 283. 移动零
[Java·算法·简单] LeetCode 283. 移动零
17 2
|
12天前
|
算法 Java
[Java·算法·中等] LeetCode21. 合并两个有序链表
[Java·算法·中等] LeetCode21. 合并两个有序链表
15 2
|
15天前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
15天前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
2天前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
5 0
|
2天前
|
存储 算法 安全
加密算法概述:分类与常见算法
加密算法概述:分类与常见算法
|
9天前
|
人工智能 算法 搜索推荐
蓝桥杯宝藏排序题目算法(冒泡、选择、插入)
以下是内容的摘要: 本文介绍了三种排序算法:冒泡排序、选择排序和插入排序。冒泡排序通过不断交换相邻的逆序元素逐步排序,最坏情况下需要 O(n^2) 次比较。选择排序在每轮中找到剩余部分的最小元素并放到已排序序列的末尾,同样具有 O(n^2) 时间复杂度。插入排序则是将每个元素插入到已排序序列的正确位置,时间复杂度也是 O(n^2),但空间复杂度为 O(1)。
|
9天前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合