基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。

1.程序功能描述
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化算法的适应度收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序

Num1 = 8;   
%机器数
Num2 = 2;                  
%产生时间矩阵
T    = 0.4+rand(Num2,Num1);                      
%种群
Npop = 100;    
%最大进化代数
Iters= 200;                        

%初始种群
Pop_n       = round(sqrt(Npop));                   
Pop_s       = ceil(Npop/Pop_n);              
Npop        = Pop_s*Pop_n;                   
[Xs,ff]     = func_initial(T,Npop);

fout        = zeros(Iters,1);                                             
for i = 1:Iters
i
    [ff,I] = sort(ff,'descend');
Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        %子种群
        Pops       = Xs(j:Pop_n:end,:);            
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_GA(T,Pops,ff_,Pmax,Fmax);
Xs(j:Pop_n:end,:) = Popss;
ff(j:Pop_n:end,:) = F3;
    end
    %进化
    [Xsolve,ybest] = func_Eval(Xs,ff);
fout(i) = -ybest;
end


[Fouts,Etime] = func_fitness(T,Xsolve); 

figure
%开始
Stime = Etime-T(:,Xsolve);                                 
fval  = -Fouts;
M1    = size(T,1);                               %机器数
NX    = length(Xsolve);                          %工件数

figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');

19

4.本算法原理
车间调度问题是一类典型的组合优化问题,旨在确定一组工件在一组机器上的加工顺序,以优化某些性能指标,如最小化完工时间、延迟时间等。自适应遗传算法(Adaptive Genetic Algorithm, AGA)是一种启发式搜索算法,通过模拟生物进化过程中的遗传、变异、选择和自然选择等机制来求解优化问题。

4.1 编码与初始化
在自适应遗传算法中,首先需要定义一种编码方式来表示问题的解。对于车间调度问题,通常采用基于工件的编码方式,即每个基因代表一个工件,基因的顺序代表工件的加工顺序。然后,随机生成一组初始解作为初始种群。

4.2 适应度函数
适应度函数用于评价每个解的质量。对于车间调度问题,适应度函数通常与要优化的性能指标相关。例如,如果要最小化完工时间,适应度函数可以是完工时间的倒数,或者直接使用完工时间的负值。

4.3 遗传操作
遗传操作包括选择、交叉和变异。选择操作根据每个解的适应度值选择优秀的解进入下一代。交叉操作通过交换两个解的部分基因来生成新的解。变异操作通过随机改变某个解的一个或多个基因来引入新的多样性。

选择操作:常见的选择策略有轮盘赌选择、锦标赛选择等。以轮盘赌选择为例,每个解被选中的概率与其适应度值成正比。

交叉操作:对于基于工件的编码方式,可以采用如顺序交叉(Order Crossover, OX)、部分匹配交叉(Partially Matched Crossover, PMX)等交叉方法。

变异操作:常见的变异操作包括交换变异、插入变异等。

4.4 自适应机制
自适应遗传算法的关键在于其自适应机制,即算法能够根据种群的进化状态动态调整遗传操作的参数,如交叉概率、变异概率等。这种自适应机制有助于提高算法的搜索效率和全局寻优能力。

4.5 终止条件
算法终止条件可以是达到最大迭代次数、解的质量满足要求、种群多样性低于阈值等。

相关文章
|
2天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
2天前
|
存储 编解码
数字频率合成器dds的量化性能分析matlab仿真
### 课题概述 分析DDS(数字频率合成器)量化性能的MATLAB仿真,研究累加器、截位和DAC位宽对频谱的影响。 ### 核心程序 在MATLAB 2022a中,使用相位映射、量化码本和频偏分析函数,比较了10bit DAC位宽截取、无截取以及相位位宽截取的频谱特性。 ### 系统原理 DDS利用相位累加器、波形查找表、DAC和LPF生成精确频率信号。相位累加器的位数决定频率分辨率和杂散性能,量化和非线性影响信号质量。 ### 分析重点 频率分辨率与相位累加器位数相关,杂散和噪声性能受相位截断、幅度量化及DAC非线性影响。提高这些参数能提升DDS输出质量。
|
2天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
3天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
6 0
|
4天前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。
|
4天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
6天前
|
算法
基于ADM自适应增量调制算法的matlab性能仿真
该文主要探讨基于MATLAB的ADM自适应增量调制算法仿真,对比ADM与DM算法。通过图表展示调制与解调效果,核心程序包括输入输出比较及SNR分析。ADM算法根据信号斜率动态调整量化步长,以适应信号变化。在MATLAB中实现ADM涉及定义输入信号、初始化参数、执行算法逻辑及性能评估。
|
7天前
|
算法
m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
11 0
|
7天前
|
传感器 算法 安全
基于WSN网络的定向步幻影路由算法matlab仿真
该文探讨了无线传感器网络中的位置隐私保护,对比了NDRW路由与定向步幻影路由在安全时间和能耗方面的性能。在MATLAB2022a中进行测试,结果显示NDRW路由提供最长的安全时间,尤其在长距离传输时,且在近距离下能耗低于幻影路由。幻影路由虽消耗更多能量,但通过随机步创造幻影源以增强安全性。NDRW路由利用非确定性随机游走策略,避免拥堵并提高效率,而幻影路由则引入方向性控制,通过启发式算法优化路径选择。
|
8天前
|
算法
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。

热门文章

最新文章