基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。

1.程序功能描述
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化算法的适应度收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序

Num1 = 8;   
%机器数
Num2 = 2;                  
%产生时间矩阵
T    = 0.4+rand(Num2,Num1);                      
%种群
Npop = 100;    
%最大进化代数
Iters= 200;                        

%初始种群
Pop_n       = round(sqrt(Npop));                   
Pop_s       = ceil(Npop/Pop_n);              
Npop        = Pop_s*Pop_n;                   
[Xs,ff]     = func_initial(T,Npop);

fout        = zeros(Iters,1);                                             
for i = 1:Iters
i
    [ff,I] = sort(ff,'descend');
Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        %子种群
        Pops       = Xs(j:Pop_n:end,:);            
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_GA(T,Pops,ff_,Pmax,Fmax);
Xs(j:Pop_n:end,:) = Popss;
ff(j:Pop_n:end,:) = F3;
    end
    %进化
    [Xsolve,ybest] = func_Eval(Xs,ff);
fout(i) = -ybest;
end


[Fouts,Etime] = func_fitness(T,Xsolve); 

figure
%开始
Stime = Etime-T(:,Xsolve);                                 
fval  = -Fouts;
M1    = size(T,1);                               %机器数
NX    = length(Xsolve);                          %工件数

figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');

19

4.本算法原理
车间调度问题是一类典型的组合优化问题,旨在确定一组工件在一组机器上的加工顺序,以优化某些性能指标,如最小化完工时间、延迟时间等。自适应遗传算法(Adaptive Genetic Algorithm, AGA)是一种启发式搜索算法,通过模拟生物进化过程中的遗传、变异、选择和自然选择等机制来求解优化问题。

4.1 编码与初始化
在自适应遗传算法中,首先需要定义一种编码方式来表示问题的解。对于车间调度问题,通常采用基于工件的编码方式,即每个基因代表一个工件,基因的顺序代表工件的加工顺序。然后,随机生成一组初始解作为初始种群。

4.2 适应度函数
适应度函数用于评价每个解的质量。对于车间调度问题,适应度函数通常与要优化的性能指标相关。例如,如果要最小化完工时间,适应度函数可以是完工时间的倒数,或者直接使用完工时间的负值。

4.3 遗传操作
遗传操作包括选择、交叉和变异。选择操作根据每个解的适应度值选择优秀的解进入下一代。交叉操作通过交换两个解的部分基因来生成新的解。变异操作通过随机改变某个解的一个或多个基因来引入新的多样性。

选择操作:常见的选择策略有轮盘赌选择、锦标赛选择等。以轮盘赌选择为例,每个解被选中的概率与其适应度值成正比。

交叉操作:对于基于工件的编码方式,可以采用如顺序交叉(Order Crossover, OX)、部分匹配交叉(Partially Matched Crossover, PMX)等交叉方法。

变异操作:常见的变异操作包括交换变异、插入变异等。

4.4 自适应机制
自适应遗传算法的关键在于其自适应机制,即算法能够根据种群的进化状态动态调整遗传操作的参数,如交叉概率、变异概率等。这种自适应机制有助于提高算法的搜索效率和全局寻优能力。

4.5 终止条件
算法终止条件可以是达到最大迭代次数、解的质量满足要求、种群多样性低于阈值等。

相关文章
|
17天前
|
算法 调度 UED
探索操作系统的心脏:调度算法的奥秘与影响
【10月更文挑战第9天】 本文深入探讨了操作系统中至关重要的组件——调度算法,它如同人体的心脏,维持着系统资源的有序流动和任务的高效执行。我们将揭开调度算法的神秘面纱,从基本概念到实际应用,全面剖析其在操作系统中的核心地位,以及如何通过优化调度算法来提升系统性能。
|
5天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2天前
|
算法 大数据 Linux
深入理解操作系统之进程调度算法
【10月更文挑战第24天】本文旨在通过浅显易懂的语言,带领读者深入了解操作系统中的进程调度算法。我们将从进程的基本概念出发,逐步解析进程调度的目的、重要性以及常见的几种调度算法。文章将通过比喻和实例,使复杂的技术内容变得生动有趣,帮助读者建立对操作系统进程调度机制的清晰认识。最后,我们还将探讨这些调度算法在现代操作系统中的应用和发展趋势。
|
11天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
19天前
|
算法 调度 UED
深入理解操作系统的进程调度算法
【10月更文挑战第7天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。它不仅影响系统的性能和用户体验,还直接关系到资源的合理分配。本文将通过浅显易懂的语言和生动的比喻,带你一探进程调度的秘密花园,从最简单的先来先服务到复杂的多级反馈队列,我们将一起见证算法如何在微观世界里编织宏观世界的和谐乐章。
|
21天前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
31 3
|
21天前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
32 2
|
24天前
|
边缘计算 算法 调度
探究操作系统的心脏:调度算法的进化与影响
【10月更文挑战第2天】 本文深入探讨了操作系统中核心组件——调度算法的历史演变、关键技术突破及其对现代计算的影响。通过详细回顾从单任务到多任务、实时系统及分布式计算环境下调度算法的发展,文章揭示了这些算法如何塑造我们的数字世界,并对未来的趋势进行了展望。不同于传统的摘要,本文特别聚焦于技术细节与实际应用的结合点,为读者提供一幅清晰的技术演进蓝图。
42 4
|
1月前
|
算法 调度 UED
探索操作系统的心脏:进程调度算法
【9月更文挑战第32天】在数字世界的每一次心跳中,都隐藏着一个不为人知的英雄——进程调度算法。它默默地在后台运作,确保我们的命令得到快速响应,应用程序平稳运行。本文将带你走进操作系统的核心,一探进程调度的奥秘,并通过代码示例揭示其背后的智慧。准备好跟随我一起深入这趟技术之旅了吗?让我们开始吧!