实时数仓 Hologres产品使用合集之当使用动态分区管理功能按日期进行分区后,通过主键和segment_key进行时间范围查询性能变差是什么原因

简介: 实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线

问题一:关于hologres的数组函数,这里的几个函数不支持常量查询,查询字段写在子查询里也不支持吗?

关于hologres的数组函数

这里的几个函数不支持常量查询,查询字段写在子查询里也不支持吗?



参考答案:

应该是array_union这个函数本身在hqe执行,但是被推到了pqe,所以报错了。问题出在 t1.user_list = t1.department_list 这个条件上,判断array是否相等走的是pqe,可以用 t1.user_list @> t1.department_list and t1.user_list <@ t1.department_list 绕过



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574306



问题二:Hologres可以优化分区表的查询性能吗?

Hologres可以优化分区表的查询性能吗?



参考答案:

看起来属于数量不大 表多了 造成需要访问的文件多了 过多的文件打开操作 消耗了额外的资源 以前访问一个shard就可以 现在要打开38个子表 每个子表还没有shard pruning的效果



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574305



问题三:Hologres使用动态分区管理,通过主键+segment_key时间范围查询性能变差,是什么原因?

Hologres使用动态分区管理,按日期分区之后,通过主键+segment_key时间范围查询性能变差,是什么原因?



参考答案:

这个得看具体情况了 通常的方法是explain analyze 了解实际的执行计划 然后看看哪个环节耗时多了 比如打开了过多的表 访问了过多的文件 或者并发度变化了 之类



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574304



问题四:Hologres如何升级到版本2.1?

Hologres如何升级到版本2.1?



参考答案:

操作步骤示例https://help.aliyun.com/zh/hologres/user-guide/instance-upgrades?spm=a2c4g.11186623.0.i74

Hologres实例自助升级步骤如下。

登录Hologres管理控制台,在左侧导航栏单击实例列表。

在实例列表页面,单击目标实例名称。

在实例详情页,单击版本参数后的升级版本。

在实例升级面板,检查版本信息后单击开始升级准备。

升级准备完成后,单击立即升级。

说明

升级准备完成后七天内,可以随时单击立即升级进行升级实例。

等待实例升级完成后,Hologres实例版本就升级到了最新版本。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574303



问题五:Hologres设置资源组隔离后,,default的cpu使用并没有降,是为什么?

Hologres设置资源组隔离后,,default的cpu使用并没有降,是为什么?



参考答案:

当您在Hologres中设置资源组隔离后,默认的CPU使用率没有降低可能有以下几个原因:

  1. 配置生效问题:确保您正确配置了资源组隔离,并且将相应的查询或用户绑定到了资源组。
  2. 并发量不足:如果您的数据库负载本身并不重,可能会导致默认的CPU使用率没有明显的下降。资源组隔离主要用于控制和限制繁忙时的资源分配,当数据库服务器面临大量并发请求时,资源组隔离的性能优势才会更加突出。
  3. 其他资源限制:除了CPU之外,资源组隔离还可以限制内存、磁盘IO等其他资源。如果您只关注CPU使用率,而其他资源没有被限制,那么默认的CPU使用率可能不会有明显变化。
  4. 查询复杂性:某些查询可能需要较长的执行时间,导致CPU使用率仍然较高。请检查具体的查询语句和执行计划,确定其中是否存在复杂或耗时较长的操作。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574302

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
相关文章
|
存储 运维 Kubernetes
实时数仓Hologres提升问题之调度性能如何解决
Hologres可以支持的最大节点规模是多少?
155 1
|
存储 运维 负载均衡
Hologres 查询队列全面解析
Hologres V3.0引入查询队列功能,实现请求有序处理、负载均衡和资源管理,特别适用于高并发场景。该功能通过智能分类和调度,确保复杂查询不会垄断资源,保障系统稳定性和响应效率。在电商等实时业务中,查询队列优化了数据写入和查询处理,支持高效批量任务,并具备自动流控、隔离与熔断机制,确保核心业务不受干扰,提升整体性能。
341 11
|
存储 SQL 数据管理
如何优化Hologres的性能?
【8月更文挑战第24天】如何优化Hologres的性能?
497 3
|
Java 数据库连接 数据库
实时数仓 Hologres产品使用合集之怎么查询版本
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
存储 JSON 安全
Hologres的查询能力
Hologres的查询能力【8月更文挑战第25天】
213 0
|
缓存 数据库
实时数仓 Hologres产品使用合集之如何查看并分析历史查询语句
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
7月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
4月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
6月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。

相关产品

  • 实时数仓 Hologres