使用 Spring Cloud Alibaba AI 构建 RAG 应用

本文涉及的产品
云原生网关 MSE Higress,422元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
MSE Nacos 企业版免费试用,1600元额度,限量50份
简介: 本文介绍了RAG(Retrieval Augmented Generation)技术,它结合了检索和生成模型以提供更准确的AI响应。示例中,数据集(包含啤酒信息)被加载到Redis矢量数据库,Spring Cloud Alibaba AI Starter用于构建一个Spring项目,演示如何在接收到用户查询时检索相关文档并生成回答。代码示例展示了数据加载到Redis以及RAG应用的工作流程,用户可以通过Web API接口进行交互。

作者:姬世文


背景介绍


RAG(Retrieval Augmented Generation)

检索增强生成(RAG)是一种用于将数据与人工智能模型集成的技术。在 RAG 工作流程中,第一步将文档数据加载到矢量数据库(例如 Redis)中。当收到用户查询时,矢量数据库会检索一组与该查询相似的文档。然后,这些文档数据充当用户问题的上下文,并与用户的查询结合使用生成响应(通常通过 LLM 模型)。


在此示例中,我们将使用包含啤酒信息的数据集,包括名称、酒精体积(ABV)、国际苦度单位(IBU)等属性以及每种啤酒的描述。该数据集将加载到 Redis 中,之后通过 Spring Cloud Alibaba AI Starter 构建 Spring 项目,以演示 RAG 应用的工作流程。


Redis 矢量数据库

矢量数据库经常充当人工智能应用程序的内存。对于那些由大型语言模型(LLM)支持的人来说尤其如此。矢量数据库允许语义搜索,这为 LLM 提供了相关上下文。Spring AI 项目旨在简化人工智能驱动的应用程序的开发,包括矢量数据库的应用。


代码和依赖关系


您可以在 SCA 的官方博客中找到此示例源码链接:sca.aliyun.com


此示例 example 使用 Spring Cloud Alibaba AI 和 Spring AI Redis,用 Sping Web 构建 Web 应用程序。


数据加载

RAG 应用使用的数据由 JSON 文档组成,文档内容如下:


{
  "id": "00gkb9",
  "name": "Smoked Porter Ale",
  "description": "The Porter Pounder Smoked Porter is a dark rich flavored ale that is made with 5 malts that include smoked and chocolate roasted malts. It has coffee and mocha notes that create a long finish that ends clean with the use of just a bit of dry hopping",
  "abv": 8,
  "ibu": 36
}


在此示例中,我们通过 RagDataLoader 类将数据插入到 Redis 中。


RAG 应用


RAGService 类在收到用户提示时,将会调用检索方法,执行以下步骤:


  1. 计算用户提示的向量
  2. 查询 Redis 数据库以检索最相关的文档
  3. 使用检索到的文档和用户提示构建提示
  4. 调用 ChatClient 并提示生成响应


调用示例


我们可以通过浏览器或者 curl 命令的方式调用 web api 接口,来获得 RAG 应用的输出。默认的 prompt 参数:What ber pairs well with smoked meats?


curl $ curl  http://127.0.0.1:8081/rag/chat

# 如果一切正常,您将看到如下响应:
Bieré De Ménage would pair well with smoked meats due to its high ABV (8%) and potentially the influence of oak barrels from the winemaking process, which can complement the rich fla
vors of smoked dishes. However, if you prefer a sturdier stout, Son of Berserker Stout with its 6.9% ABV and 20 IBUs could also serve as a good match for smoked foods, especially since it's a substantial stout without additional complexities like bourbon or oak.


如果您使用浏览器调用,将看到以下内容:

image.png

在此示例中,将 Spring Cloud Alibaba AI 与 Redis 向量存储,仅通过几个类实现了 RAG 应用。欢迎您试用 Spring Cloud Alibaba AI Starter,如果有任何问题,您可以通过 Issue 的方式与我们联系。


也欢迎通过钉钉扫描下方二维码加入社区钉群。(群号:64485010179

image.png

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
当无人机遇上Agentic AI:新的应用场景及挑战
本文简介了Agentic AI与AI Agents的不同、Agentic无人机的概念、应用场景、以及所面临的挑战
109 5
当无人机遇上Agentic AI:新的应用场景及挑战
|
2月前
|
人工智能 数据挖掘
🔔阿里云百炼智能体和工作流可以发布为组件了,AI应用变成“搭积木”
本文介绍了如何通过智能体组件化设计快速生成PPT。首先,创建一个“PPT大纲生成”智能体并发布为组件,该组件可根据用户输入生成结构清晰的大纲。接着,在新的智能体应用中调用此组件与MCP服务(如ChatPPT),实现从大纲到完整PPT的自动化生成。整个流程模块化、复用性强,显著降低AI开发门槛,提升效率。非技术人员也可轻松上手,满足多样化场景需求。
🔔阿里云百炼智能体和工作流可以发布为组件了,AI应用变成“搭积木”
|
2月前
|
数据采集 机器学习/深度学习 人工智能
代理IP:企业AI应用的隐形加速器与合规绞索
代理IP作为企业AI应用的重要基础设施,既是效率提升的加速器,也可能成为合规风险的来源。它通过技术演进重塑数据采集、模型训练与安全防护等核心环节,如智能路由、量子加密和边缘计算等创新方案显著优化性能。然而,全球法规(如GDPR)对数据流动提出严格要求,促使企业开发自动化合规审计系统应对挑战。未来,代理IP将向智能路由3.0、PaaS服务及量子网络方向发展,成为连接物理与数字世界的神经网络。企业在享受其带来的效率增益同时,需构建技术、法律与伦理三位一体的防护体系以规避风险。
62 0
|
18天前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
1月前
|
SQL Java 数据库
解决Java Spring Boot应用中MyBatis-Plus查询问题的策略。
保持技能更新是侦探的重要素质。定期回顾最佳实践和新技术。比如,定期查看MyBatis-Plus的更新和社区的最佳做法,这样才能不断提升查询效率和性能。
77 1
|
2月前
|
传感器 人工智能 自动驾驶
生成式AI应用于自动驾驶:前沿与机遇
近期发表的一篇综述性论文总结了生成式AI在自动驾驶领域的应用进展,并探讨了自动驾驶与机器人、无人机等其它智能系统在生成式AI技术上的交叉融合趋势
82 10