【Python DataFrame 专栏】Python DataFrame 入门指南:从零开始构建数据表格

简介: 【5月更文挑战第19天】本文介绍了Python数据分析中的核心概念——DataFrame,通过导入`pandas`库创建并操作DataFrame。示例展示了如何构建数据字典并转换为DataFrame,以及进行数据选择、添加修改列、计算统计量、筛选和排序等操作。DataFrame适用于处理各种规模的表格数据,是数据分析的得力工具。掌握其基础和应用是数据分析之旅的重要起点。

513d480add3fc6502af723fb93602cbc.png

在 Python 的数据分析领域中,DataFrame 是一个极其重要的概念和工具。它提供了一种强大而灵活的方式来处理和操作表格型数据。让我们一起深入探索 Python DataFrame 的奇妙世界,从零开始构建数据表格。

首先,我们需要导入必要的库,在 Python 中,通常使用 pandas 库来创建和操作 DataFrame。

import pandas as pd

接下来,让我们开始创建一个简单的 DataFrame。

data = {
   
   'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)

上述代码中,我们定义了一个包含姓名、年龄和城市信息的字典,然后通过 DataFrame 函数将其转换为 DataFrame。输出的结果如下:

      Name  Age    City
0    Alice   25  New York
1      Bob   30   London
2  Charlie   35    Paris

我们可以对 DataFrame 进行各种操作。例如,获取特定的列:

print(df['Name'])

或者获取特定的行:

print(df.iloc[1])

还可以进行数据的添加和修改。比如添加新的列:

df['Gender'] = ['Female', 'Male', 'Male']
print(df)

修改现有数据:

df.loc[0, 'Age'] = 26
print(df)

除了这些基本操作,DataFrame 还提供了丰富的函数和方法来进行数据的汇总、筛选、排序等。

例如,计算某一列的平均值:

print(df['Age'].mean())

筛选出年龄大于 30 的行:

filtered_df = df[df['Age'] > 30]
print(filtered_df)

对数据进行排序:

sorted_df = df.sort_values(by='Age')
print(sorted_df)

通过不断地实践和探索,我们能够充分发挥 DataFrame 的强大功能,高效地处理和分析各种表格型数据。无论是处理小规模的数据集还是大规模的数据分析任务,DataFrame 都能成为我们的得力助手。

总之,掌握 Python DataFrame 的基础知识和操作方法是开启数据分析之旅的关键一步。希望这篇入门指南能为你在 Python 数据处理的道路上提供坚实的基础和指引。让我们继续在这个充满挑战和机遇的数据世界中探索前行。

相关文章
|
6天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
11天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
33 3
|
11天前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
38 2
|
11天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
29 1
|
11天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
27 1
|
12天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
22 1
|
12天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
22 0
|
18天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
48 0
|
12天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
30 2
|
19天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2