【Python DataFrame 专栏】Python DataFrame 入门指南:从零开始构建数据表格

简介: 【5月更文挑战第19天】本文介绍了Python数据分析中的核心概念——DataFrame,通过导入`pandas`库创建并操作DataFrame。示例展示了如何构建数据字典并转换为DataFrame,以及进行数据选择、添加修改列、计算统计量、筛选和排序等操作。DataFrame适用于处理各种规模的表格数据,是数据分析的得力工具。掌握其基础和应用是数据分析之旅的重要起点。

513d480add3fc6502af723fb93602cbc.png

在 Python 的数据分析领域中,DataFrame 是一个极其重要的概念和工具。它提供了一种强大而灵活的方式来处理和操作表格型数据。让我们一起深入探索 Python DataFrame 的奇妙世界,从零开始构建数据表格。

首先,我们需要导入必要的库,在 Python 中,通常使用 pandas 库来创建和操作 DataFrame。

import pandas as pd
AI 代码解读

接下来,让我们开始创建一个简单的 DataFrame。

data = {
   
   'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)
AI 代码解读

上述代码中,我们定义了一个包含姓名、年龄和城市信息的字典,然后通过 DataFrame 函数将其转换为 DataFrame。输出的结果如下:

      Name  Age    City
0    Alice   25  New York
1      Bob   30   London
2  Charlie   35    Paris
AI 代码解读

我们可以对 DataFrame 进行各种操作。例如,获取特定的列:

print(df['Name'])
AI 代码解读

或者获取特定的行:

print(df.iloc[1])
AI 代码解读

还可以进行数据的添加和修改。比如添加新的列:

df['Gender'] = ['Female', 'Male', 'Male']
print(df)
AI 代码解读

修改现有数据:

df.loc[0, 'Age'] = 26
print(df)
AI 代码解读

除了这些基本操作,DataFrame 还提供了丰富的函数和方法来进行数据的汇总、筛选、排序等。

例如,计算某一列的平均值:

print(df['Age'].mean())
AI 代码解读

筛选出年龄大于 30 的行:

filtered_df = df[df['Age'] > 30]
print(filtered_df)
AI 代码解读

对数据进行排序:

sorted_df = df.sort_values(by='Age')
print(sorted_df)
AI 代码解读

通过不断地实践和探索,我们能够充分发挥 DataFrame 的强大功能,高效地处理和分析各种表格型数据。无论是处理小规模的数据集还是大规模的数据分析任务,DataFrame 都能成为我们的得力助手。

总之,掌握 Python DataFrame 的基础知识和操作方法是开启数据分析之旅的关键一步。希望这篇入门指南能为你在 Python 数据处理的道路上提供坚实的基础和指引。让我们继续在这个充满挑战和机遇的数据世界中探索前行。

目录
打赏
0
2
2
0
320
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
13天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
24 4
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。