【Python DataFrame 专栏】Python DataFrame 入门指南:从零开始构建数据表格

简介: 【5月更文挑战第19天】本文介绍了Python数据分析中的核心概念——DataFrame,通过导入`pandas`库创建并操作DataFrame。示例展示了如何构建数据字典并转换为DataFrame,以及进行数据选择、添加修改列、计算统计量、筛选和排序等操作。DataFrame适用于处理各种规模的表格数据,是数据分析的得力工具。掌握其基础和应用是数据分析之旅的重要起点。

513d480add3fc6502af723fb93602cbc.png

在 Python 的数据分析领域中,DataFrame 是一个极其重要的概念和工具。它提供了一种强大而灵活的方式来处理和操作表格型数据。让我们一起深入探索 Python DataFrame 的奇妙世界,从零开始构建数据表格。

首先,我们需要导入必要的库,在 Python 中,通常使用 pandas 库来创建和操作 DataFrame。

import pandas as pd

接下来,让我们开始创建一个简单的 DataFrame。

data = {
   
   'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)

上述代码中,我们定义了一个包含姓名、年龄和城市信息的字典,然后通过 DataFrame 函数将其转换为 DataFrame。输出的结果如下:

      Name  Age    City
0    Alice   25  New York
1      Bob   30   London
2  Charlie   35    Paris

我们可以对 DataFrame 进行各种操作。例如,获取特定的列:

print(df['Name'])

或者获取特定的行:

print(df.iloc[1])

还可以进行数据的添加和修改。比如添加新的列:

df['Gender'] = ['Female', 'Male', 'Male']
print(df)

修改现有数据:

df.loc[0, 'Age'] = 26
print(df)

除了这些基本操作,DataFrame 还提供了丰富的函数和方法来进行数据的汇总、筛选、排序等。

例如,计算某一列的平均值:

print(df['Age'].mean())

筛选出年龄大于 30 的行:

filtered_df = df[df['Age'] > 30]
print(filtered_df)

对数据进行排序:

sorted_df = df.sort_values(by='Age')
print(sorted_df)

通过不断地实践和探索,我们能够充分发挥 DataFrame 的强大功能,高效地处理和分析各种表格型数据。无论是处理小规模的数据集还是大规模的数据分析任务,DataFrame 都能成为我们的得力助手。

总之,掌握 Python DataFrame 的基础知识和操作方法是开启数据分析之旅的关键一步。希望这篇入门指南能为你在 Python 数据处理的道路上提供坚实的基础和指引。让我们继续在这个充满挑战和机遇的数据世界中探索前行。

相关文章
|
15天前
|
数据处理 索引 Python
用Python实现数据录入、追加、数据校验并生成表格
本示例展示了如何使用Python和Pandas库实现学生期末考试成绩的数据录入、追加和校验,并生成Excel表格。首先通过`pip install pandas openpyxl`安装所需库,然后定义列名、检查并读取现有数据、用户输入数据、数据校验及保存至Excel文件。程序支持成绩范围验证,确保数据准确性。
59 14
|
23天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
21天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
21天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
37 7
|
21天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
22天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
35 5
|
21天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
52 3
|
Python
Python 入门指南(中文) 3.6 & 2.7 版本
Python 入门指南(中文) 2.7 & 3.6
1725 0
|
21天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!