Python数据分析 | 线性回归

简介: Python数据分析 | 线性回归

Python数据分析学习笔记,今天分享下利用Python对业务进行数据预处理,并利用线性回归进行数据预测。





壹 数据导入


Python下载及环境配置这里就不赘述了哈,网上教程非常多,我们直接一开始就进入干货,打它一个开门见山。

①导入Python常用数据分析库:常用的numpy、pandas、matplotlib先导入。

②将待处理的数据读取:read_excel进行Excel文件读取,用sheet_name指定导入的sheet。

③数据初视:用head函数将读取的数据表格展示前几行用于初步观察,可以看到初步的数据形式、字段。



数据预处理


初步观察发现有一些列的数据是空的,它们对于数据分析没有意义,考虑去掉。并且后续进行一定的数据预处理。

①去掉无效列:运用drop函数去掉无效的数据列,并再次调用head函数观察数据。

②看上图效果,数据已经规整一些了,接下来需要看看整体的数据表还有多大:调用shape并用print函数打印出来,可以看到数据表格是227行、12列的大小。

③接下来需要进行数据缺失值处理:调用info函数,查看各列的数据,可以看到各列的数据还是有不一致的情况,需要做进一步的处理。

④先以我们后续需要用来做线性回归的列“内容阅读量”为标准,将不含该值的数据行去除:调用dropna函数,并执行info函数看数据情况。

⑤上述处理后,数据已经规整了一些,但某些行的数值仍然是缺失的,此时不能再整行或整列的进行删除了,须对个别缺失值执行填充:发现“月留”和“当月高活人数”这两列仍有缺失值,采取均值填充的方法处理,主要用到fillna函数。

至此,数据预处理流程完成。数据预处理非常关键,非常影响后续的数据分析流程




线性回归


数据预处理流程完成后,后续将进行线性回归,进行业务相关数据的拟合和预测。

①导入线性回归分析库:建立线性回归的自变量x和因变量y,这里我们以“内容阅读量”这一列数据作为x,以“业务DAU(人)”这一列作为y。

②建立线性回归方程,并计算出回归系数:调用linear_model库,计算回归系数为0.1683。

③绘制拟合图:调用matplotlib库里的scatter方法绘制y和x的散点图,并将线性回归拟合的直线也同步绘制上去

④数据预测:调用linear_model库里的predict方法,可以预测出因变量后续的值。便于大家后续对结果进行预估。


至此,利用Python进行线性回归的实例完成。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
53 2
|
1月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
37 1
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
44 0
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
21天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
24 2
|
22天前
|
机器学习/深度学习 数据可视化 Python
使用最小二乘法进行线性回归(Python)
【10月更文挑战第28天】本文介绍了使用Python实现最小二乘法进行线性回归的步骤,包括数据准备、计算均值、计算斜率和截距、构建线性回归方程以及预测和可视化结果。通过示例代码展示了如何从创建数据点到最终绘制回归直线的完整过程。
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。