首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理

简介: 【10月更文挑战第18天】《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》提出了一种新型多模态大模型LongLLaVA,结合了Mamba和Transformer架构,通过系统优化实现在单张A100 80GB GPU上处理近千张图像的突破。该模型在视频理解、高分辨率图像分析和多模态智能体任务中表现出色,显著提升了计算效率。

在人工智能领域,多模态大模型(MLLMs)的发展一直备受关注。这些模型能够同时处理文本、图像等多种类型的数据,在视频理解、高分辨率图像分析以及多模态智能体等领域具有广泛的应用前景。然而,随着模型规模的不断扩大,如何在保持性能的同时提高计算效率成为了一个亟待解决的问题。

近日,一篇名为《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》的论文在arXiv上发布,引起了学术界和工业界的广泛关注。该论文介绍了一种名为LongLLaVA的新型多模态大模型,它采用了Mamba和Transformer的混合架构,通过一系列系统优化,实现了在单张A100 80GB GPU上处理近千张图像的突破。

LongLLaVA的创新之处在于其独特的混合架构设计。传统的多模态大模型通常采用Transformer架构,虽然在处理序列数据方面表现出色,但在处理大规模图像数据时存在计算效率低下的问题。而Mamba架构则是一种新型的序列模型,它通过引入状态空间模型(SSM)的概念,实现了对长序列数据的高效处理。

LongLLaVA将Mamba和Transformer两种架构的优势相结合,通过在模型中交替使用Mamba和Transformer块,实现了对多模态数据的高效处理。具体来说,Mamba块用于捕捉图像之间的时间和空间依赖关系,而Transformer块则用于处理文本和图像之间的跨模态交互。这种混合架构的设计使得LongLLaVA能够在保持性能的同时,大幅提高计算效率。

此外,LongLLaVA还采用了一种渐进式训练策略,通过逐步增加训练数据的规模和复杂度,使得模型能够更好地适应大规模多模态数据的处理需求。这种训练策略的采用,进一步提高了LongLLaVA的性能和鲁棒性。

根据论文中的实验结果,LongLLaVA在多个基准测试中表现出了优异的性能。在视频理解任务中,LongLLaVA能够准确捕捉视频中的动态变化和上下文信息,实现对视频内容的深度理解。在高分辨率图像分析任务中,LongLLaVA能够高效处理大规模图像数据,实现对图像细节的精准分析。在多模态智能体任务中,LongLLaVA能够同时处理文本和图像输入,实现对复杂环境的感知和决策。

尤其值得一提的是,LongLLaVA在处理大规模图像数据时表现出了极高的计算效率。根据论文中的实验结果,LongLLaVA能够在单张A100 80GB GPU上处理近千张图像,这对于传统的多模态大模型来说几乎是不可能完成的任务。这种计算效率的提升,使得LongLLaVA在实际应用中具有更广泛的应用前景。

尽管LongLLaVA在多模态大模型领域取得了突破性的进展,但仍面临一些挑战和问题。首先,LongLLaVA的混合架构设计虽然提高了计算效率,但也增加了模型的复杂性。如何在保持性能的同时进一步简化模型结构,是一个值得研究的问题。

其次,LongLLaVA的训练数据主要来自于公开数据集,这些数据集可能存在一定的偏见和局限性。如何构建更全面、更多样化的训练数据集,以提高模型的泛化能力和鲁棒性,也是一个亟待解决的问题。

此外,LongLLaVA虽然在处理大规模图像数据时表现出了极高的计算效率,但在处理其他类型的多模态数据(如音频、视频等)时可能存在一定的局限性。如何将LongLLaVA的混合架构设计推广到其他类型的多模态数据处理任务中,也是一个值得探索的方向。

论文地址:https://arxiv.org/abs/2409.02889

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer架构:重塑现代AI的核心引擎
Transformer架构:重塑现代AI的核心引擎
211 98
|
1月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
299 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
4天前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
73 1
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
22天前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
95 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
编码器-解码器架构详解:Transformer如何在PyTorch中工作
本文深入解析Transformer架构,结合论文与PyTorch源码,详解编码器、解码器、位置编码及多头注意力机制的设计原理与实现细节,助你掌握大模型核心基础。建议点赞收藏,干货满满。
249 2
|
15天前
|
机器学习/深度学习 存储 资源调度
Transformer架构的简要解析
Transformer架构自2017年提出以来,彻底革新了人工智能领域,广泛应用于自然语言处理、语音识别等任务。其核心创新在于自注意力机制,通过计算序列中任意两个位置的相关性,打破了传统循环神经网络的序列依赖限制,实现了高效并行化与长距离依赖建模。该架构由编码器和解码器组成,结合多头注意力、位置编码、前馈网络等模块,大幅提升了模型表达能力与训练效率。从BERT到GPT系列,几乎所有现代大语言模型均基于Transformer构建,成为深度学习时代的关键技术突破之一。
200 7
|
9天前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
96 0
|
17天前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
344 1
|
25天前
|
机器学习/深度学习 编解码 人工智能
InternVL3.5多模态大模型开源发布,1B-241B九种尺寸,支持跨平台GUI自动化与矢量图生成
近日,上海人工智能实验室(上海AI实验室)重磅开源发布了多模态大模型书生·万象 InternVL3.5,通过创新的级联式强化学习(Cascade RL)、动态视觉分辨率路由与解耦部署架构,实现推理能力、部署效率与通用能力的全面升级。
446 7

热门文章

最新文章