PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

简介: PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

全文链接:http://tecdat.cn/?p=28265 


作者:Xiaoyi Sun


预测股票价格,并在合适的时间产生交易策略实现收益,一直是一个热门的问题,到现在为止也提出了很多预测方法。但股票价格 的实时预测是一个难点,需要及时预测价格趋势并作出交易判断。


解决方案


任务/目标


根据市场上已有价格等数据,预测股票价格或趋势,形成交易策略,通过回测计算收益情况。


数据源准备


使用分钟集数据,获得股票价格、交易量、 流量数据,其中流量数据是用一种特殊的方 法计算。每天交易时间为 4 小时,所以一天 有 240 组数据。

由于数据量级的差异,需要对数据进行预处理,都进行归一化。


构造


以上说明了如何抽取相关特征,我们大致有如下训练样本(只列举部分特征)。

划分训练集和测试集


考虑到最终模型会预测将来的某时间段的销 量,为了更真实的测试模型效果,以时间来 切分训练集和测试集。其中训练集与测试集 的比例为 8:2。


建模


LSTM,长短期记忆网络,是一种特殊的 RNN 网络。LSTM 解决了 RNN 中存在的长期依赖问题, 有输入门、输出门和遗忘门。

EMD,经验模态分解,任何信号可以分解成若干模态分量之合。

EMD分解在处理非平稳及非线性数据上,具有非常明显的优势,适合于分析非线性、非 平稳信号序列,具有很高的信噪比。


模型优化


利用 LSTM 预测股票价格解决 EMD 分解的端点问题。

利用 LSTM 预测中国平安的股票价格情况:从 loss 图中可以看出,网络效果较好,训练集和测试集的loss 都是下降后趋于稳定,不存在过拟合现象。

从下图可以看出测试集的价格预测有很高的 一致性。


点击标题查阅往期内容


Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性


01

02

03

04



下图是放大后效果

利用EMD 分解计算 MACD 的值生成交易信号,将信号代入真实股价产生收益。可以 看出胜率在60%左右

相关文章
|
2月前
|
数据可视化 Python
【负荷预测】基于变分模态分解(VMD-CNN-LSTM)的短期电力负荷预测【Python】
本项目实现了一种基于变分模态分解(VMD)的短期电力负荷预测模型——VMD-CNN-LSTM。通过VMD技术将原始电力负荷数据分解为多个平稳子序列,结合温度和时间等特征构建矩阵,输入CNN-LSTM模型训练,最终叠加重构得到预测结果。此方法有效应对非线性和非平稳性引起的误差,精度高且稳定性强。程序采用Python编写,注释清晰,运行稳定,并提供直观的可视化结果。附带部分代码及详细运行结果展示,下载链接已提供。
|
8月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
931 2
|
4月前
|
机器学习/深度学习 自然语言处理
不是RNN的锅!清华团队深入分析长上下文建模中的状态崩溃,Mamba作者点赞
清华大学团队发表论文,深入分析RNN在长上下文建模中的状态崩溃现象,并提出四种缓解方法:减少记忆与增加遗忘、状态归一化、滑动窗口机制及训练更长序列。实验表明,这些方法显著提升Mamba-2模型处理超过1M tokens的能力。尽管存在局限性,该研究为RNN长上下文建模提供了新思路,得到Mamba作者认可。
77 6
|
7月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
1072 1
|
8月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
9月前
|
机器学习/深度学习 自然语言处理
如何让等变神经网络可解释性更强?试试将它分解成简单表示
【9月更文挑战第19天】等变神经网络在图像识别和自然语言处理中表现出色,但其复杂结构使其可解释性成为一个挑战。论文《等变神经网络和分段线性表示论》由Joel Gibson、Daniel Tubbenhauer和Geordie Williamson撰写,提出了一种基于群表示论的方法,将等变神经网络分解成简单表示,从而提升其可解释性。简单表示被视为群表示的“原子”,通过这一分解方法,可以更好地理解网络结构与功能。论文还展示了非线性激活函数如何产生分段线性映射,为解释等变神经网络提供了新工具。然而,该方法需要大量计算资源,并且可能无法完全揭示网络行为。
99 1
|
10月前
|
自然语言处理 C# 开发者
Uno Platform多语言开发秘籍大公开:轻松驾驭全球用户,一键切换语言,让你的应用成为跨文化交流的桥梁!
【8月更文挑战第31天】Uno Platform 是一个强大的开源框架,允许使用 C# 和 XAML 构建跨平台的原生移动、Web 和桌面应用程序。本文详细介绍如何通过 Uno Platform 创建多语言应用,包括准备工作、设置多语言资源、XAML 中引用资源、C# 中加载资源以及处理语言更改。通过简单的步骤和示例代码,帮助开发者轻松实现应用的国际化。
102 1
|
10月前
|
机器学习/深度学习 数据采集 数据可视化
【优秀python系统毕设】基于Python flask的气象数据可视化系统设计与实现,有LSTM算法预测气温
本文介绍了一个基于Python Flask框架开发的气象数据可视化系统,该系统集成了数据获取、处理、存储、LSTM算法气温预测以及多种数据可视化功能,旨在提高气象数据的利用价值并推动气象领域的发展。
917 1
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
TensorFlow 中的循环神经网络超厉害!从理论到实践详解,带你领略 RNN 的强大魅力!
【8月更文挑战第31天】循环神经网络(RNN)在人工智能领域扮演着重要角色,尤其在TensorFlow框架下处理序列数据时展现出强大功能。RNN具有记忆能力,能捕捉序列中的长期依赖关系,适用于自然语言处理、机器翻译和语音识别等多个领域。尽管存在长期依赖和梯度消失等问题,但通过LSTM和GRU等改进结构可以有效解决。在TensorFlow中实现RNN十分简便,为处理复杂序列数据提供了有力支持。
88 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
7.1 NLP经典神经网络 RNN LSTM
该文章介绍了自然语言处理中的情感分析任务,探讨了如何使用深度神经网络,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),来处理和分析文本数据中的复杂情感倾向。

热门文章

最新文章

推荐镜像

更多