PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

简介: PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

全文链接:http://tecdat.cn/?p=28265 


作者:Xiaoyi Sun


预测股票价格,并在合适的时间产生交易策略实现收益,一直是一个热门的问题,到现在为止也提出了很多预测方法。但股票价格 的实时预测是一个难点,需要及时预测价格趋势并作出交易判断。


解决方案


任务/目标


根据市场上已有价格等数据,预测股票价格或趋势,形成交易策略,通过回测计算收益情况。


数据源准备


使用分钟集数据,获得股票价格、交易量、 流量数据,其中流量数据是用一种特殊的方 法计算。每天交易时间为 4 小时,所以一天 有 240 组数据。

由于数据量级的差异,需要对数据进行预处理,都进行归一化。


构造


以上说明了如何抽取相关特征,我们大致有如下训练样本(只列举部分特征)。

划分训练集和测试集


考虑到最终模型会预测将来的某时间段的销 量,为了更真实的测试模型效果,以时间来 切分训练集和测试集。其中训练集与测试集 的比例为 8:2。


建模


LSTM,长短期记忆网络,是一种特殊的 RNN 网络。LSTM 解决了 RNN 中存在的长期依赖问题, 有输入门、输出门和遗忘门。

EMD,经验模态分解,任何信号可以分解成若干模态分量之合。

EMD分解在处理非平稳及非线性数据上,具有非常明显的优势,适合于分析非线性、非 平稳信号序列,具有很高的信噪比。


模型优化


利用 LSTM 预测股票价格解决 EMD 分解的端点问题。

利用 LSTM 预测中国平安的股票价格情况:从 loss 图中可以看出,网络效果较好,训练集和测试集的loss 都是下降后趋于稳定,不存在过拟合现象。

从下图可以看出测试集的价格预测有很高的 一致性。


点击标题查阅往期内容


Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性


01

02

03

04



下图是放大后效果

利用EMD 分解计算 MACD 的值生成交易信号,将信号代入真实股价产生收益。可以 看出胜率在60%左右

相关文章
|
3月前
|
数据挖掘 Python
用python的tushare模块分析股票案例(python3经典编程案例)
该文章提供了使用Python的tushare模块分析股票数据的案例,展示了如何获取股票数据以及进行基本的数据分析。
173 0
|
3月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能股票交易策略
使用Python实现智能股票交易策略
79 0
|
4月前
|
数据采集 数据可视化 索引
【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】
【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】
341 1
|
4月前
|
机器学习/深度学习 数据可视化 API
【python】python基于tushare股票数据分析可视化(源码+数据+报告)【独一无二】
【python】python基于tushare股票数据分析可视化(源码+数据+报告)【独一无二】
388 1
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
7.1 NLP经典神经网络 RNN LSTM
该文章介绍了自然语言处理中的情感分析任务,探讨了如何使用深度神经网络,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),来处理和分析文本数据中的复杂情感倾向。
|
4月前
|
数据采集 数据可视化 数据挖掘
【python】python可口可乐股票历史数据分析与可视化(源码+数据集+论文)【独一无二】
【python】python可口可乐股票历史数据分析与可视化(源码+数据集+论文)【独一无二】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
60 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码

热门文章

最新文章

下一篇
DataWorks