【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

简介: 【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

曼哈顿距离与欧式距离在聚类算法中的区别

引言

在聚类算法中,距离度量是一个关键的概念,用于衡量数据点之间的相似性或距离。曼哈顿距离和欧式距离是两种常用的距离度量方法,在聚类算法中经常被使用。本文将对曼哈顿距离和欧式距离进行详细比较和分析,探讨它们的数学原理、几何意义、应用场景以及在聚类算法中的影响。

数学原理与计算方式

曼哈顿距离:
曼哈顿距离,也称为城市街区距离或L1范数,是指两点之间的距离是沿着坐标轴的方向移动,每次只能沿着一个方向移动一个单位距离,即各坐标的绝对距离总和。其数学表达式为:

[ D(x, y) = \sum_{i=1}^{n} |x_i - y_i| ]

其中 ( x ) 和 ( y ) 分别表示两个数据点的坐标,( n ) 表示数据的维度。

欧式距离:
欧式距离,也称为直线距离或L2范数,是指两点之间的距离是直线的长度,即两点在空间中的直线距离。其数学表达式为:

[ D(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} ]

几何意义与可视化效果

曼哈顿距离:
曼哈顿距离可以被看作是沿着坐标轴的“城市街区”路径的长度,因此它在多维空间中表现为各个坐标之间的距离总和。在二维空间中,曼哈顿距离等于两点之间的水平和垂直距离之和,因此它通常呈现出沿着网格线的路径。这种路径的特性使得曼哈顿距离在处理具有网格结构或离散特征的数据时更为适用。

欧式距离:
欧式距离则代表了两点之间的最短直线距离,它在几何上对应于直线路径。在二维空间中,欧式距离等于两点之间的直线长度,因此它通常呈现出直线的路径。欧式距离在处理连续特征或具有连续性分布的数据时更为适用,因为它能够充分利用数据的连续性结构。

应用场景与选择考量

曼哈顿距离:
曼哈顿距离适用于处理具有离散特征或网格结构的数据,例如图像处理、城市规划、路径规划等领域。它对异常值的影响较小,因为它是沿着坐标轴的距离总和,不受距离的绝对值影响。

欧式距离:
欧式距离适用于处理连续特征或具有连续性分布的数据,例如传感器数据、生物医学数据、金融数据等领域。它对数据的特征尺度敏感,因此需要进行特征缩放或标准化以保证各个特征的权重相等。

在聚类算法中的影响

曼哈顿距离:
在K-means聚类算法中,使用曼哈顿距离可以得到更符合离散数据结构的聚类结果。曼哈顿距离对异常值的影响较小,因此在处理含有噪声或离群点的数据时更为稳健。

欧式距离:
在K-means聚类算法中,使用欧式距离可以得到更符合连续数据结构的聚类结果。欧式距离对数据的特征尺度敏感,因此需要对数据进行特征缩放以保证聚类结果的准确性。

结论

综上所述,曼哈顿距离和欧式距离在聚类算法中都有其独特的应用场景和适用性。工程师在选择距离度量方法时,需要根据数据的特征、结构和聚类需

求进行综合考量,以获得最佳的聚类结果。对于离散特征或具有网格结构的数据,可以考虑使用曼哈顿距离;而对于连续特征或具有连续性分布的数据,则更适合使用欧式距离。

相关文章
|
28天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
2月前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
153 0
|
2月前
|
机器学习/深度学习 数据采集 算法
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
|
3月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
116 0
|
3月前
|
算法 数据可视化 数据挖掘
基于AOA算术优化的KNN数据聚类算法matlab仿真
本程序基于AOA算术优化算法优化KNN聚类,使用Matlab 2022A编写。通过AOA搜索最优特征子集,提升KNN聚类精度,并对比不同特征数量下的聚类效果。包含完整仿真流程与可视化结果展示。
|
4月前
|
机器学习/深度学习 人工智能 算法
AP聚类算法实现三维数据点分类
AP聚类算法实现三维数据点分类
158 0
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章