【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

简介: 【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

曼哈顿距离与欧式距离在聚类算法中的区别

引言

在聚类算法中,距离度量是一个关键的概念,用于衡量数据点之间的相似性或距离。曼哈顿距离和欧式距离是两种常用的距离度量方法,在聚类算法中经常被使用。本文将对曼哈顿距离和欧式距离进行详细比较和分析,探讨它们的数学原理、几何意义、应用场景以及在聚类算法中的影响。

数学原理与计算方式

曼哈顿距离:
曼哈顿距离,也称为城市街区距离或L1范数,是指两点之间的距离是沿着坐标轴的方向移动,每次只能沿着一个方向移动一个单位距离,即各坐标的绝对距离总和。其数学表达式为:

[ D(x, y) = \sum_{i=1}^{n} |x_i - y_i| ]

其中 ( x ) 和 ( y ) 分别表示两个数据点的坐标,( n ) 表示数据的维度。

欧式距离:
欧式距离,也称为直线距离或L2范数,是指两点之间的距离是直线的长度,即两点在空间中的直线距离。其数学表达式为:

[ D(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} ]

几何意义与可视化效果

曼哈顿距离:
曼哈顿距离可以被看作是沿着坐标轴的“城市街区”路径的长度,因此它在多维空间中表现为各个坐标之间的距离总和。在二维空间中,曼哈顿距离等于两点之间的水平和垂直距离之和,因此它通常呈现出沿着网格线的路径。这种路径的特性使得曼哈顿距离在处理具有网格结构或离散特征的数据时更为适用。

欧式距离:
欧式距离则代表了两点之间的最短直线距离,它在几何上对应于直线路径。在二维空间中,欧式距离等于两点之间的直线长度,因此它通常呈现出直线的路径。欧式距离在处理连续特征或具有连续性分布的数据时更为适用,因为它能够充分利用数据的连续性结构。

应用场景与选择考量

曼哈顿距离:
曼哈顿距离适用于处理具有离散特征或网格结构的数据,例如图像处理、城市规划、路径规划等领域。它对异常值的影响较小,因为它是沿着坐标轴的距离总和,不受距离的绝对值影响。

欧式距离:
欧式距离适用于处理连续特征或具有连续性分布的数据,例如传感器数据、生物医学数据、金融数据等领域。它对数据的特征尺度敏感,因此需要进行特征缩放或标准化以保证各个特征的权重相等。

在聚类算法中的影响

曼哈顿距离:
在K-means聚类算法中,使用曼哈顿距离可以得到更符合离散数据结构的聚类结果。曼哈顿距离对异常值的影响较小,因此在处理含有噪声或离群点的数据时更为稳健。

欧式距离:
在K-means聚类算法中,使用欧式距离可以得到更符合连续数据结构的聚类结果。欧式距离对数据的特征尺度敏感,因此需要对数据进行特征缩放以保证聚类结果的准确性。

结论

综上所述,曼哈顿距离和欧式距离在聚类算法中都有其独特的应用场景和适用性。工程师在选择距离度量方法时,需要根据数据的特征、结构和聚类需

求进行综合考量,以获得最佳的聚类结果。对于离散特征或具有网格结构的数据,可以考虑使用曼哈顿距离;而对于连续特征或具有连续性分布的数据,则更适合使用欧式距离。

相关文章
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
12天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
20天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
43 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
28天前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
24天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
17天前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
20 0
|
21天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
27 0
|
11天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章