深度学习参数初始化(一)Xavier初始化 含代码

简介: 深度学习参数初始化(一)Xavier初始化 含代码

一、简介

       网络训练的过程中, 容易出现梯度消失(梯度特别的接近0)和梯度爆炸(梯度特别的大)的情况,导致大部分反向传播得到的梯度不起作用或者起反作用. 研究人员希望能够有一种好的权重初始化方法: 让网络前向传播或者反向传播的时候, 卷积的输出和前传的梯度比较稳定. 合理的方差既保证了数值一定的不同, 又保证了数值一定的稳定.(通过卷积权重的合理初始化, 让计算过程中的数值分布稳定)


       Xavier初始化也称为Glorot初始化,因为发明人为Xavier Glorot。Xavier initialization是 Glorot 等人为了解决随机初始化的问题提出来的另一种初始化方法,他们的思想就是尽可能的让输入和输出服从相同的分布,这样就能够避免后面层的激活函数的输出值趋向于0。


       因为权重多使用高斯或均匀分布初始化,而两者不会有太大区别,只要保证两者的方差一样就可以了,所以高斯和均匀分布我们一起说。


       Pytorch中已经有实现,下面会详细介绍:

torch.nn.init.xavier_uniform_(tensor: Tensor, gain: float = 1.)
torch.nn.init.xavier_normal_(tensor: Tensor, gain: float = 1.)

二、基础知识

      1. 均匀分布的方差:

       

      2.假设随机变量X和随机变量Y相互独立,则有

      3.假设随机变量X和随机变量Y相互独立,且E(X)=E(Y)=0,则有

       

三、标准初始化方法

        权重初始化满足均匀分布时:

 

       因为上式的方差是: ,所以对应的高斯分布写作:

 

       对于全连接网络,我们把输入X的每一维度x看做一个随机变量,并且假设E(x)=0,Var(x)=1。假设权重W和输入X相互独立,则隐层状态的方差为:


       可以看出标准初始化方法得到一个非常好的特性:隐层的状态的均值为0,方差为常量1/3,和网络的层数无关,这意味着对于sigmoid这样的函数来说,自变量落在有梯度的范围内。


       但是因为sigmoid激活值都是大于0的,会导致下一层的输入不满足E(x)=0。其实标准初始化也只适用于满足下面将要提到的Glorot假设的激活函数,比如tanh。

四、Xavier初始化的假设条件

         在文章开始部分我们给出了参数初始化的必要条件。但是这两个条件只保证了训练过程中可以学到有用的信息——参数梯度不为0(因为参数被控制在激活函数的有效区域)。而Glorot认为:优秀的初始化应该使得各层的激活值和状态梯度的方差在传播过程中的方差保持一致。也就是说我们要保证前向传播各层参数的方差和反向传播时各层参数的方差一致 :

我们把这两个条件称为Glorot条件

综合起来,现在我们做如下假设:

1.输入的每个特征方差一样:Var(x);

2.激活函数对称:这样就可以假设每层的输入均值都是0;

3.f′(0)=1

4.初始时,状态值落在激活函数的线性区域:f′(Si(k))≈1。

后三个都是关于激活函数的假设,我们称为Glorot激活函数假设。

五、Xavier初始化的简单的公式推导:

首先给出关于状态的梯度和关于参数的梯度的表达式:


我们以全连接的一层为例,表达式为:

其中ni表示输入个数。

根据概率统计知识我们有下面的方差公式:

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:

假设输入x和权重w独立同分布,为了保证输入与输出方差一致,则应该有:

对于一个多层的网络,某一层的方差可以用累积的形式表达, 为当前层数:

特别的,反向传播计算梯度时同样具有类似的形式:


综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,我们将输入输出l两层的方差取均值,最终我们的权重方差应满足:

所以Xavier初始化的高斯分布公式:

根据均匀分布的方差公式:

又因为这里|a|=|b|,所以Xavier初始化的实现就是下面的均匀分布:

六、Pytorch实现:

import torch
 
# 定义模型 三层卷积 一层全连接
class DemoNet(torch.nn.Module):
    def __init__(self):
        super(DemoNet, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 1, 3)
        print('random init:', self.conv1.weight)
        '''
        xavier 初始化方法中服从均匀分布 U(−a,a) ,分布的参数 a = gain * sqrt(6/fan_in+fan_out),
        这里有一个 gain,增益的大小是依据激活函数类型来设定,该初始化方法,也称为 Glorot initialization
        '''
        torch.nn.init.xavier_uniform_(self.conv1.weight, gain=1)
        print('xavier_uniform_:', self.conv1.weight)
        '''
            xavier 初始化方法中服从正态分布,
            mean=0,std = gain * sqrt(2/fan_in + fan_out)
        '''
        torch.nn.init.xavier_normal_(self.conv1.weight, gain=1)
        print('xavier_uniform_:', self.conv1.weight)
 
 
if __name__ == '__main__':
    demoNet = DemoNet()

七、对比实验

实验使用tanh为激活函数

1.各层激活值直方图


       上图是原始的初始化,下图是Xavier初始化。Xavier初始化的网络的各层的激活值较为一致,且取值均比原始的标准初始化要小。

2.各层反向传播的梯度(关于状态的梯度)的分布情况


上图是原始的初始化,下图是Xavier初始化。Xavier初始化的网络的各层的梯度较为一致,且取值均比原始的标准初始化要小。作者怀疑不同层上具有不同的梯度可能会导致病态或训练较慢 。

3.各层参数梯度的分布情况

       式子(3)已经证明各层参数梯度的方差和层数基本无关。上图是原始的初始化,下图是Xavier初始化。我们发现下图的标准初始化参数梯度小了一个数量级。

4.各层权重梯度方差的分布情况


上图是原始的初始化,下图是Xavier初始化。Xavier初始化权重梯度的方差比较一致。

八、总结

1.Xavier初始化的高斯分布公式:

2.Xavier初始化的均匀分布公式:


3.Xavier初始化是在标准初始化方法的基础上,兼顾了各层在前向传播和分享传播时的参数方差。


4.Xavier初始的缺点:因为Xavier的推导过程是基于几个假设的,其中一个是激活函数是线性的。这并不适用于ReLU激活函数。另一个是激活值关于0对称,这个不适用于sigmoid函数和ReLU函数。在使用sigmoid函数和ReLU函数时,标准初始化和Xavier初始化得到的初始激活、参数梯度特性是一样的。激活值的方差逐层递减,参数梯度的方差也逐层递减。

相关文章
|
7月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
882 27
|
5月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
237 1
|
5月前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
124 0
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
740 2
|
机器学习/深度学习 算法框架/工具 Python
深度学习的奥秘与实践:从理论到代码
本文将探索深度学习的世界,揭示其背后的原理,并分享如何将这些理论应用到实际编程中。我们将一起踏上一段旅程,从神经网络的基础概念出发,逐步深入到复杂的模型训练和优化技术。你将看到,即使是初学者,也可以实现自己的深度学习项目。
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
476 22
|
10月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1248 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
1148 6
|
12月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
432 40
|
10月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
268 0

热门文章

最新文章