揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧

简介: 【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。

快速解决模型微调灾难性遗忘问题
image.png

随着深度学习的发展,模型的微调成为了提升现有模型性能的重要手段之一。然而,在对预训练模型进行微调时,一个常见的问题是“灾难性遗忘”,即模型在新任务上训练后,会遗忘之前学到的知识。这不仅影响了模型在原有任务上的表现,还限制了模型在多任务学习中的应用。本文将探讨如何通过不同的策略来缓解这一问题,并提供一个基于PyTorch实现的例子。

一种有效的方法是使用弹性权重巩固(Elastic Weight Consolidation, EWC)。该方法通过计算重要参数的Fisher信息矩阵来衡量它们的重要性,并在后续的任务中优化目标函数时加入正则项来惩罚对这些重要参数的更改。具体来说,损失函数可以定义为原任务损失加上一个表示参数偏离度量的项:

[ L(\theta) = L_{\text{new}}(\theta) + \frac{\lambda}{2} \sum_i w_i (\theta_i - \theta^*_i)^2 ]

其中 ( L_{\text{new}} ) 是新任务的损失函数,( w_i ) 是Fisher矩阵的对角线元素,( \lambda ) 是正则化强度系数,( \theta^*_i ) 是在原任务上训练得到的最佳参数值。

下面是一个简单的Python实现示例,用于演示如何使用EWC来减轻灾难性遗忘:

import torch
from torch import nn, optim
from torch.utils.data import DataLoader

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc = nn.Linear(784, 10)

    def forward(self, x):
        return self.fc(x.view(x.size(0), -1))

def ewc_loss(model, fisher_diagonals, prev_params, lambda_factor):
    loss = 0
    for name, param in model.named_parameters():
        _loss = fisher_diagonals[name] * (param - prev_params[name]) ** 2
        loss += _loss.sum()
    return lambda_factor * loss

def train(model, dataloader, optimizer, criterion, device, ewc_loss=None):
    model.train()
    for data, target in dataloader:
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        if ewc_loss is not None:
            loss += ewc_loss
        loss.backward()
        optimizer.step()

# 初始化模型、数据加载器等
model = Model().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()

# 假设我们已经有了fisher_diagonals和prev_params
train(model, train_loader, optimizer, criterion, device, ewc_loss=fisher_diagonals, prev_params)

# 微调完成后,更新fisher_diagonals和prev_params以备下一个任务
# (此处省略更新步骤)
AI 代码解读

上述代码展示了如何在训练过程中引入EWC损失以减少灾难性遗忘。需要注意的是,为了简化示例,这里省略了一些细节如Fisher矩阵的估计以及参数的重要性计算等。在实际应用中,还需要根据具体情况调整正则化强度以及其他超参数。

通过采用类似EWC这样的策略,可以在一定程度上缓解灾难性遗忘的问题,使得模型能够在保持已有知识的同时,有效地适应新的任务或领域。这种方法特别适用于需要连续学习的场景,比如终身学习或在线学习等领域。

相关文章
利用 Java 代码获取淘宝关键字 API 接口
在数字化商业时代,精准把握市场动态与消费者需求是企业成功的关键。淘宝作为中国最大的电商平台之一,其海量数据中蕴含丰富的商业洞察。本文介绍如何通过Java代码高效、合规地获取淘宝关键字API接口数据,帮助商家优化产品布局、制定营销策略。主要内容包括: 1. **淘宝关键字API的价值**:洞察用户需求、优化产品标题与详情、制定营销策略。 2. **获取API接口的步骤**:注册账号、申请权限、搭建Java开发环境、编写调用代码、解析响应数据。 3. **注意事项**:遵守法律法规与平台规则,处理API调用限制。 通过这些步骤,商家可以在激烈的市场竞争中脱颖而出。
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
54 10
淘宝评论API接口操作步骤详解,代码示例参考
淘宝评论API接口是淘宝开放平台提供的一项服务,通过该接口,开发者可以访问商品的用户评价和评论。这些评论通常包括评分、文字描述、图片或视频等内容。商家可以利用这些信息更好地了解消费者的需求和偏好,优化产品和服务。同时,消费者也可以从这些评论中获得准确的购买参考,做出更明智的购买决策。
|
2月前
|
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
70 11
速卖通商品详情接口(速卖通API系列)
速卖通(AliExpress)是阿里巴巴旗下的跨境电商平台,提供丰富的商品数据。通过速卖通开放平台(AliExpress Open API),开发者可获取商品详情、订单管理等数据。主要功能包括商品搜索、商品详情、订单管理和数据报告。商品详情接口aliexpress.affiliate.productdetail.get用于获取商品标题、价格、图片等详细信息。开发者需注册账号并创建应用以获取App Key和App Secret,使用PHP等语言调用API。该接口支持多种请求参数和返回字段,方便集成到各类电商应用中。
微店商品列表接口(微店 API 系列)
微店商品列表接口是微店API系列的一部分,帮助开发者获取店铺中的商品信息。首先需注册微店开发者账号并完成实名认证,选择合适的开发工具如PyCharm或VS Code,并确保熟悉HTTP协议和JSON格式。该接口支持GET/POST请求,主要参数包括店铺ID、页码、每页数量和商品状态等。响应数据为JSON格式,包含商品详细信息及状态码。Python示例代码展示了如何调用此接口。应用场景包括商品管理系统集成、数据分析、多平台数据同步及商品展示推广。
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
34 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
亚马逊商品详情接口(亚马逊 API 系列)
亚马逊作为全球最大的电商平台之一,提供了丰富的商品资源。开发者和电商从业者可通过亚马逊商品详情接口获取商品的描述、价格、评论、排名等数据,对市场分析、竞品研究、价格监控及业务优化具有重要价值。接口基于MWS服务,支持HTTP/HTTPS协议,需注册并获得API权限。Python示例展示了如何使用mws库调用接口获取商品详情。应用场景包括价格监控、市场调研、智能选品、用户推荐和库存管理等,助力电商运营和决策。
56 23
lazada商品详情接口 (lazada API系列)
Lazada 是东南亚知名电商平台,提供海量商品资源。通过其商品详情接口,开发者和商家可获取商品标题、价格、库存、描述、图片、用户评价等详细信息,助力市场竞争分析、商品优化及库存管理。接口采用 HTTP GET 请求,返回 JSON 格式的响应数据,支持 Python 等语言调用。应用场景包括竞品分析、价格趋势研究、用户评价分析及电商应用开发,为企业决策和用户体验提升提供有力支持。
56 21
eBay商品详情接口(ebay API系列)
eBay 商品详情接口是电商从业者、开发者和数据分析师获取商品详细信息的重要工具,涵盖标题、价格、库存、卖家信息等。使用前需在 eBay 开发者平台注册并获取 API 凭证,通过 HTTP GET 请求调用接口,返回 JSON 格式数据。Python 示例代码展示了如何发送请求并解析响应,确保合法合规使用数据。
40 12

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等