【AIGC】深入浅出理解检索增强技术(RAG)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【5月更文挑战第10天】本文介绍了检索增强生成(RAG)技术,这是一种将AI模型与内部数据结合,提升处理和理解能力的方法。通过实时从大型文档库检索信息,扩展预训练语言模型的知识。文章通过示例说明了当模型需要回答未公开来源的内容时,RAG如何通过添加上下文信息来增强模型的回答能力。讨论了实际应用中令牌限制和文本分块的问题,以及使用文本嵌入技术解决相关性匹配的挑战。最后,概述了实现RAG的步骤,并预告后续将分享构建检索增强服务的详情。

[toc]


想象一下,您的公司可以使用强大的 AI 工具,该工具可以处理大量数据并提取重要结论、识别关键信息并有效地总结它。这些功能可以显着提高员工的工作效率,使他们能够专注于工作中最有价值的方面,而不是耗时的数据处理。在这种情况下,检索增强生成 (RAG) 开辟了新的视角。RAG 允许将 AI 模型与公司的特定内部数据集成,不仅可以进行处理,还可以对这些知识进行智能解释和利用。在本文中,我们将探讨如何实现这一点。
image.png

一、检索增强定义

RAG 是一种技术,它允许通过从大型文档数据库中实时检索信息来扩展预训练语言模型的知识。

用于查询机器学习模型的基本提示架构如下所示:
image.png

在这种情况下,我们向机器学习模型询问波兰首都的情况。这是常识,我们的模型对答案没有问题。

二、深度使用检索增强

想更深入地了解这个简单的例子吗?比方说,我们想要一个机器学习模型,可以回答有关我们从未出版过的 300 页原始书《我的故事》情节的问题,该书的唯一来源是我们私人笔记本电脑上的.pdf文件。因此,模型不可能在训练期间接触到这本书,也不可能在其他地方找到有关它的任何信息。

如果我们向学习模型询问这个故事,模型无法回答。这是它的样子:
image.png

在这种情况下,检索增强生成 (RAG) 就派上用场了。我们可以通过向提示添加上下文信息来简单地扩展机器学习模型的知识。

从理论上讲,它如下所示:
image.png

从理论上讲,它会起作用。该模型会收到我们的查询以及整本书,因此它现在知道了故事并可以回答我们的查询。但是,此解决方案存在实际问题。

我们可以在一个提示下使用的令牌数量是有限的。例如,对于 ChatGPT-4,此限制为 8192 个代币;即使是 GPT-4 Turbo,限制也是 128,000 个代币。

假设我们书中的一页平均有 500 个单词。300 页乘以 500 字等于整本书的 150,000 字。我们应该记住,使用的令牌数量由提示查询、提示上下文和机器学习模型的答案组成。
image.png

仅上下文就相当于 150,000 个令牌。通过添加提示查询和机器学习模型的答案,总数将更高。即使可以发送这样的提示,也只是浪费资源和金钱。我们不需要本书的整个上下文来回答我们的问题。

很明显,我们需要将我们的书分成几块,对于提示的上下文,只附加那些与我们的问题相关的块。将文本分成块是一项简单的任务,但是我们如何确定哪些部分是获得查询答案所必需的呢?

在这里,将文本表示为数字向量(称为嵌入)的技术派上了用场。在另一篇博文中,您可以了解有关嵌入工作原理的更多详细信息。

现在,只要理解嵌入是一种将文本转换为数字向量的技术就足够了,这些数字向量保留了转换后句子的含义。根据句子的含义,这些向量位于向量空间中的特定位置。所以,现在我们知道,在运行我们的提示之前,我们必须首先准备数据(在我们的例子中是书),方法是将其分成块,使用嵌入技术将它们转换为数字向量,并将它们保存在向量数据库中。

此过程如下所示:
image.png

我们已经准备好了我们的数据,以便我们可以很容易地准确地找到书中对我们的查询有用的部分。

有了这些知识和准备好的数据,让我们再次开始从机器学习模型中获取答案的过程。下图描述了在此过程中执行的所有步骤。
image.png

小节

本节我们学习了检索增强,我们知道了什么是检索增强,我们为什么需要检索增强以及检索增强构建思路,后面章节我们会专门整理出来检索增强服务的构建过程,大家敬请期待吧。

小编是一名热爱人工智能的专栏作者,致力于分享人工智能领域的最新知识、技术和趋势。这里,你将能够了解到人工智能的最新应用和创新,探讨人工智能对未来社会的影响,以及探索人工智能背后的科学原理和技术实现。欢迎大家点赞,评论,收藏,让我们一起探索人工智能的奥秘,共同见证科技的进步!

目录
相关文章
|
1月前
|
人工智能 自然语言处理 数据可视化
什么是AIGC?如何使用AIGC技术辅助办公?
2分钟了解AIGC技术及其如何提高日常办公效率!
99 4
什么是AIGC?如何使用AIGC技术辅助办公?
|
2月前
|
人工智能 自然语言处理 数据挖掘
Claude 3.5:一场AI技术的惊艳飞跃 | AIGC
在这个科技日新月异的时代,人工智能(AI)的进步令人惊叹。博主体验了Claude 3.5 Sonnet的最新功能,对其卓越的性能、强大的内容创作与理解能力、创新的Artifacts功能、视觉理解与文本转录能力、革命性的“computeruse”功能、广泛的应用场景与兼容性以及成本效益和易用性深感震撼。这篇介绍将带你一窥其技术前沿的魅力。【10月更文挑战第12天】
96 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
230 3
|
2月前
|
人工智能 自然语言处理 搜索推荐
超越边界:探索2023年AIGC技术盛宴,预测前沿科技的奇迹 🚀
本文探讨了互联网内容生产从PGC、UGC到AIGC的演变,特别关注了AIGC(人工智能生成内容)的发展及其对未来内容生产的深远影响。文章详细介绍了AIGC的定义、技术进展(如生成算法、多模态技术、AI芯片等),并展示了AIGC在多个领域的广泛应用,如代码生成、智能编程、个性化服务等。未来,AIGC将在各行各业创造巨大价值,推动社会进入更加智能化的时代。同时,文章也探讨了AIGC对开发者的影响,以及其可能无法完全取代人类的原因,强调开发者可以利用AIGC提升工作效率。
54 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
作为AIGC技术的一种应用-bard
8月更文挑战第22天
75 15
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
|
4月前
|
人工智能
AIGC图生视频技术下的巴黎奥运高光时刻
图生视频,Powered By「 阿里云视频云 」
148 4
|
5月前
|
存储 人工智能 搜索推荐
|
4月前
|
传感器 人工智能 供应链
制造业的未来:AIGC及其他先进技术
制造业的未来:AIGC及其他先进技术
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术大揭秘:它将如何彻底颠覆内容创作?未来世界的奇迹!
【8月更文挑战第8天】在信息爆炸的时代,人工智能生成内容(AIGC)正快速崛起,从自动撰写新闻到创作文学作品,其应用广泛。本文以自动编写体育新闻为例,介绍如何运用自然语言处理和生成技术实现。随着深度学习的进步,如GANs和VAEs的应用,AIGC能创造更真实多样的内容。未来,AIGC或将变革信息消费方式,拓展至视频、音频及虚拟现实领域,同时也会引发伦理和法律议题,需谨慎应对。
79 0

热门文章

最新文章