Moveit + Gazebo实现联合仿真:ABB yumi双臂机器人( 二、双臂协同运动实现 )

简介: Moveit + Gazebo实现联合仿真:ABB yumi双臂机器人( 二、双臂协同运动实现 )

1. 安装并配置好ROS、MoveIt和Gazebo。


2. 导入ABB YuMi双臂机器人模型到Gazebo。


3. 使用MoveIt配置双臂机器人的URDF文件。


4. 编写一个Python脚本来实现双臂协同运动。



以下是一个简单的Python脚本示例,用于实现ABB YuMi双臂机器人的协同运动:



```python


#!/usr/bin/env python


# -*- coding: utf-8 -*-



import sys


import rospy


import moveit_commander


from moveit_msgs.msg import PlanningScene, PlanningSceneWorldReference


from gazebo_msgs.srv import SpawnModel, DeleteModel


from geometry_msgs.msg import PoseStamped



def main():


   # 初始化节点


   rospy.init_node('yumi_dual_arm_moveit', anonymous=True)



   # 初始化MoveIt指挥官


   moveit_commander.roscpp_initialize(sys.argv)



   # 创建双臂机器人的MoveGroupCommander对象


   left_arm = moveit_commander.MoveGroupCommander("left_manipulator")


   right_arm = moveit_commander.MoveGroupCommander("right_manipulator")



   # 添加双臂机器人到规划场景


   planning_scene = PlanningScene()


   scene_world_reference = PlanningSceneWorldReference()


   scene_world_reference.header.frame_id = "base_link"


   planning_scene.world_reference = scene_world_reference


   planning_scene.robot_states = [left_arm.get_current_state(), right_arm.get_current_state()]


   moveit_commander.planning_scene.publish(planning_scene)



   # 设置目标姿态


   target_pose = PoseStamped()


   target_pose.header.frame_id = "base_link"


   target_pose.pose.position.x = 0.5


   target_pose.pose.position.y = 0.0


   target_pose.pose.position.z = 0.5


   target_pose.pose.orientation.w = 1.0



   # 设置目标约束


   left_constraint = moveit_commander.Constraints()


   left_constraint.orientation_mask = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]


   left_constraint.orientation_path_mask = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]


   left_constraint.preferred_orientation = target_pose.pose.orientation


   right_constraint = moveit_commander.Constraints()


   right_constraint.orientation_mask = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]


   right_constraint.orientation_path_mask = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]


   right_constraint.preferred_orientation = target_pose.pose.orientation



   # 根据约束求解路径规划问题


   left_goal = left_arm.set_joint_value_target(left_constraint)


   right_goal = right_arm.set_joint_value_target(right_constraint)


   left_arm.set_max_velocity_scaling_factor(1.5)


   right_arm.set_max_velocity_scaling_factor(1.5)


   left_arm.set_start_state_to_current_state()


   right_arm.set_start_state_to_current_state()


   left_group = left_arm.go(wait=True)


   right_group = right_arm.go(wait=True)



   # 打印结果


   print("Left arm joint values: " + str(left_group.get_current_joint_values()))


   print("Right arm joint values: " + str(right_group.get_current_joint_values()))



   # 确保所有线程都已关闭


   moveit_commander.roscpp_shutdown()


   moveit_commander.os._exit(0)



if __name__ == '__main__':


   main()


```



这个脚本首先导入了所需的库,然后初始化了节点和MoveIt指挥官。接下来,它创建了两个MoveGroupCommander对象,分别用于控制ABB YuMi双臂机器人的左右臂。然后,它将双臂机器人添加到规划场景中,并设置了目标姿态和约束。最后,它使用这些约束来求解路径规划问题,并打印出最终的关节值。  


相关文章
|
4天前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
47 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
1月前
|
安全 机器人 开发者
清华开源全球最大双臂机器人扩散大模型RDT,懂调酒能遛狗,登顶HF具身热榜
清华大学近期发布了全球最大的双臂机器人扩散大模型RDT,该模型在调酒、遛狗等任务上表现优异,登顶Hugging Face具身智能热榜。RDT采用扩散架构,具备强大的学习能力,能生成高质量的机器人动作序列,展示了清华在机器人技术领域的领先水平。尽管面临泛化能力、计算资源及安全性等挑战,RDT的开源特性仍为其广泛应用和发展提供了广阔前景。
62 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
119 0
|
2月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
4月前
|
数据可视化 机器人 Python
实例8:机器人的空间描述和变换仿真
本文是关于机器人空间描述和变换的仿真实验教程,通过Python编程和可视化学习,介绍了刚体的平动和转动、位姿描述、坐标变换等基础知识,并提供了具体的实验步骤和代码实现。实验目的是让读者通过编程实践,了解和掌握空间变换的数学原理和操作方法。
55 2
实例8:机器人的空间描述和变换仿真
|
4月前
|
数据可视化 机器人 Python
实例9:四足机器人运动学正解平面RR单腿可视化
本文是关于四足机器人正向运动学(FK)的实例教程,通过Python编程实现了简化的mini pupper平面二连杆模型的腿部可视化,并根据用户输入的关节角计算出每个关节相对于基坐标系的坐标。
82 1
|
4月前
|
机器人
PUN ☀️六、机器人基础设置:运动、相机、攻击与生命值
PUN ☀️六、机器人基础设置:运动、相机、攻击与生命值
|
4月前
|
数据可视化 算法 机器人
实例10:四足机器人运动学逆解可视化与实践
本文是关于四足机器人逆运动学(IK)的实例教程,介绍了逆运动学的概念、求解方法、多解情况和工作空间,并通过Python编程实现了简化的mini pupper平面二连杆模型的逆运动学可视化,包括单腿舵机的校准和动态可视化运动学计算结果。
226 0
|
4月前
|
XML 传感器 数据可视化
09 机器人仿真Gazebo实例
本文详细介绍了在ROS(机器人操作系统)中使用Gazebo进行机器人仿真的流程,包括安装Gazebo、创建URDF模型、使用xacro优化URDF、配置ROS_control以及为模型添加Gazebo属性和控制器插件,并提供了相应的示例代码。
247 0
|
6月前
|
机器学习/深度学习 传感器 算法
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
282 2
下一篇
DataWorks