人工智能平台PAI产品使用合集之机器学习PAI中特征重要性的原理不知道如何解决

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI把gender 和 age 配置一个combo特征,不知道能否区分开?

机器学习PAI把gender 和 age 配置一个combo特征,不知道能否区分开?



参考答案:

在机器学习PAI(Platform for Artificial Intelligence)中,您可以创建组合特征(combo feature),以探索不同特征之间的相互作用。对于您提到的性别(gender)和年龄(age)特征,它们可以被合并为一个组合特征来尝试捕捉这两个变量之间可能存在的关联。

然而,能否成功区分开这些特征取决于您的数据集以及您正在解决的问题的具体情况。以下是一些关于如何创建组合特征并评估其区分能力的建议:

  1. 定义组合特征:
  • 将性别和年龄信息合并成一个新的特征。这可以通过拼接字符串、使用编码技术(如独热编码或数字编码)或者通过其他方式来实现。
  1. 训练模型:
  • 使用包含原始特征和新组合特征的数据集来训练机器学习模型。
  • 选择合适的算法,并根据问题类型(例如分类、回归等)调整超参数。
  1. 评估性能:
  • 使用交叉验证或其他评估方法来比较包含组合特征的模型与只包含原始特征的模型的性能。
  • 比较指标可能包括准确率、AUC-ROC、F1分数等,具体取决于任务类型。
  1. 可视化分析:
  • 可视化组合特征的效果,例如绘制学习曲线、决策边界图等,以便更好地理解这个特征对模型预测的影响。
  1. 特征重要性分析:
  • 如果你的模型支持,可以计算每个特征的重要性得分,看看组合特征是否比单独的性别或年龄特征更重要。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/573262



问题二:机器学习PAI在我们的场景假设gender出现了冲突,有什么方式可以提前检测这样的冲突?

机器学习PAI在我们的场景假设gender出现了冲突(bucket超配以后仍然发生了冲突);我们分布上可能20%是M,15%是F,65%的是unknown,如果出现冲突将unknown哈希到M上,unknown和M具有相同的embedding。这个带来的问题是会给unknown中是F的去推M的榜单;但是实际上F和M的消费行为有很大的差异,造成整体指标的下降。所以作为用户还是希望实现知道这块有可能即使参数超配了仍然可能存在冲突,并且是调用的tf哪个方法造成的冲突,有什么方式可以提前检测这样的冲突。



参考答案:

不要用hash了,配置一个vacab_list吧



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/573261



问题三:机器学习PAI环境有点问题,只能用cpu训练,如果重装cuda,easy_rec会有影响吗?

机器学习PAI环境有点问题,只能用cpu训练,如果重装cuda,easy_rec会有影响吗?需要也重装吗?



参考答案:

如果只能使用CPU训练机器学习PAI,并且需要重装CUDA来解决问题,那么重装CUDA不会影响EasyRec的运行,但是EasyRec需要在GPU环境下进行训练。因此,如果想要在GPU环境下训练EasyRec,需要重新安装CUDA并重新配置环境。

在GPU环境下训练EasyRec,先确认您的云服务器是否已经安装了CUDA,先安装CUDA并配置好环境。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/573259?spm=5176.8068049.0.0.4ba36d19KKIDGy



问题四:机器学习PAI特征重要性的原理,是用那个指标算的特征重要性?

机器学习PAI特征重要性的原理,是用那个指标算的特征重要性?

大概这么做的么?训练时根据效果学习各个特征丢弃的概率,丢弃概率低的就是重要的。

top 重要特征的结果稳定不



参考答案:

是参考这篇论文实现的:https://arxiv.org/pdf/1712.08645.pdf ,具体可以看一下论文。应该是让损失函数最小的方式计算的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/573254



问题五:机器学习PAI每次训练都要新建一个目录吗?

机器学习PAI每次训练都要新建一个目录吗?我看之前的checkpoint在的话,模型会加载起来继续train。有没有办法restart?没找到相关的参数。



参考答案:

试一下这个参数:https://github.com/alibaba/EasyRec/blob/master/pai_jobs/run.py#L174

写在 Dextra_params= 后面



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/573253

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
6月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
227 7
|
2月前
|
机器学习/深度学习 人工智能 运维
阿里云PAI人工智能平台介绍、优势及收费标准,手动整理
阿里云人工智能平台PAI是面向开发者和企业的机器学习与深度学习工程平台,提供数据标注、模型构建、训练、部署及推理优化等全链路服务。内置140+优化算法,支持PyTorch、TensorFlow等多种框架,具备高性能训练与推理能力,适用于自动驾驶、金融风控、智能推荐、智慧医疗等多个行业场景。PAI提供零代码开发、可视化建模、大模型一键部署等功能,助力企业快速构建AI应用。支持多种购买方式,如按量付费、预付费等,满足不同业务需求。
|
3月前
|
存储 分布式计算 API
基于PAI-FeatureStore的LLM embedding功能,结合通义千问大模型,可通过以下链路实现对物品标题、内容字段的离线和在线特征管理。
本文介绍了基于PAI-FeatureStore和通义千问大模型的LLM embedding功能,实现物品标题、内容字段的离线与在线特征管理。核心内容包括:1) 离线特征生产(MaxCompute批处理),通过API生成Embedding并存储;2) 在线特征同步,实时接入数据并更新Embedding至在线存储;3) Python SDK代码示例解析;4) 关键步骤说明,如客户端初始化、参数配置等;5) 最佳实践,涵盖性能优化、数据一致性及异常处理;6) 应用场景示例,如推荐系统和搜索排序。该方案支持端到端文本特征管理,满足多种语义理解需求。
116 1
|
6月前
|
存储 机器学习/深度学习 缓存
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
134 2
|
6月前
|
JSON 数据格式
基于 PAI-ArtLab 使用 ComfyUI 生成产品效果图
本文介绍了通过PAI ArtLab平台生成电商背景图的实验。用户可上传汽车、家电、化妆品等产品图片,快速生成背景并提升画质,实现降本增效。具体步骤包括登录阿里云完成实名认证,访问PAI ArtLab平台领取免费试用资源,使用ComfyUI加载工作流并上传图片,调整参数生成结果。此外,还提供了 Flux重绘和ControlNet微调等高级功能,以及常见问题解答,帮助用户更好地操作与优化图片效果。
|
6月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
144 0
|
8月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
167 6
|
8月前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
161 6
|
6月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。

相关产品

  • 人工智能平台 PAI