通义千问Qwen-72B-Chat大模型在PAI平台的微调实践

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

作者:熊兮、贺弘、临在

通义千问-72B(Qwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模的大语言模型,在2023年11月正式开源。Qwen-72B的预训练数据类型多样、覆盖广泛,包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上,使用对齐机制打造的基于大语言模型的AI助手。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

使用PAI-DSW快速体验和轻量化微调Qwen-72B-Chat

PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。Qwen-72B-Chat的教程可以在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中检索到,参见下图:

image.png

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。

快速体验Qwen-72B-Chat

首先,我们在DSW调用ModelScope快速体验Qwen-72B-Chat模型进行对话。在安装完ModelScope相关依赖后,我们可以运行如下Python代码:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfig# Note: The default behavior now has injection attack prevention off.tokenizer=AutoTokenizer.from_pretrained("qwen/Qwen-72B-Chat", revision='master', trust_remote_code=True)
# use bf16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()# use fp16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()# use cpu only# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="cpu", trust_remote_code=True).eval()# use auto mode, automatically select precision based on the device.model=AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", revision='master', device_map="auto", trust_remote_code=True).eval()
# 第一轮对话 1st dialogue turnresponse, history=model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。# 第二轮对话 2nd dialogue turnresponse, history=model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。# 第三轮对话 3rd dialogue turnresponse, history=model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》

为了节省显存,ModelScope也支持使用Int4/Int8量化模型:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfigtokenizer=AutoTokenizer.from_pretrained("Qwen/Qwen-72B-Chat-Int4", revision='master', trust_remote_code=True)
model=AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-72B-Chat-Int4",
device_map="auto",
trust_remote_code=True).eval()
response, history=model.chat(tokenizer, "你好", history=None)

轻量化微调Qwen-72B-Chat

轻量化微调Qwen-72B-Chat最佳实践支持最主流的轻量化微调算法LoRA,并且需要使用GU108(80GB)4卡及以上资源进行计算。以下,我们简述轻量化微调Qwen-72B-Chat的算法流程。首先,我们下载Qwen-72B-Chat的Checkpoint和用于LoRA微调的数据集,用户也可以按照上述格式自行准备数据集。

defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
qwen72b_url=f"http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/qwen72b/Qwen-72B-Chat-sharded.tar"aria2(qwen72b_url, qwen72b_url.split("/")[-1], "/root/")
!cd/root&&tar-xvfQwen-72B-Chat-sharded.tar!wget-chttp://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu.aliyuncs.com/qwen72b/sharegpt_zh_1K.json-P/workspace/Qwen

第二步,我们可以修改示例命令的超参数,并且拉起训练任务。

!cd/workspace/Qwen&&CUDA_DEVICE_MAX_CONNECTIONS=1torchrun--nproc_per_node8 \
--nnodes1 \
--node_rank0 \
--master_addrlocalhost \
--master_port6001 \
finetune.py \
--model_name_or_path/root/Qwen-72B-Chat-sharded \
--data_pathsharegpt_zh_1K.json \
--bf16True \
--output_dir/root/output_qwen \
--num_train_epochs1 \
--per_device_train_batch_size1 \
--per_device_eval_batch_size1 \
--gradient_accumulation_steps8 \
--evaluation_strategy"no" \
--save_strategy"steps" \
--save_steps1000 \
--save_total_limit1 \
--learning_rate3e-4 \
--weight_decay0.1 \
--adam_beta20.95 \
--warmup_ratio0.01 \
--lr_scheduler_type"cosine" \
--logging_steps1 \
--report_to"none" \
--model_max_length2048 \
--lazy_preprocessTrue \
--use_lora \
--gradient_checkpointing \
--deepspeedfinetune/ds_config_zero3.json

当训练结束后,将LoRA权重合并到模型Checkpoint。

frompeftimportAutoPeftModelForCausalLMmodel=AutoPeftModelForCausalLM.from_pretrained(
'/root/output_qwen', # path to the output directorydevice_map="auto",
trust_remote_code=True).eval()
merged_model=model.merge_and_unload()
merged_model.save_pretrained('/root/qwen72b_sft', max_shard_size="2048MB", safe_serialization=True)
!cp/root/Qwen-72B-Chat-sharded/qwen.tiktoken/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenization_qwen.py/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenizer_config.json/root/qwen72b_sft/

最后,我们使用轻量化微调后的Qwen-72B-Chat模型进行推理。以推理框架vllm为例,推理接口如下:

fromvllmimportLLMfromvllm.sampling_paramsimportSamplingParamsqwen72b=LLM("/root/qwen72b_sft/", tensor_parallel_size=2, trust_remote_code=True, gpu_memory_utilization=0.99)
samplingparams=SamplingParams(temperature=0.0, max_tokens=512, stop=['<|im_end|>'])
prompt="""<|im_start|>system<|im_end|><|im_start|>user<|im_end|>Hello! What is your name?<|im_end|><|im_start|>assistant"""output=qwen72b.generate(prompt, samplingparams)
print(output)

其中,tensor_parallel_size需要根据DSW示例配置中的GPU数量进行调整。

使用PAI-QuickStart全量参数微调Qwen-72B-Chat

快速开始(PAI-QuickStart)是PAI产品组件,集成了国内外AI开源社区中优质的预训练模型,支持零代码实现全量参数微调Qwen-72B-Chat。PAI-QuickStart的这一款全量参数微调组件使用PAI灵骏智算服务作为底层计算资源,使用4机32卡(每卡80GB显存)进行训练。Qwen-72B-Chat的全量参数微调基于Megatron-LM的训练流程,支持了数据并行、算子拆分、流水并行、序列并行、选择性激活重算、Zero显存优化等技术,大幅提升大模型分布式训练效率。在这一组件中,我们提前对模型Checkpoint进行了切分,适配多机多卡环境训练,用户只需要根据格式上传训练集和验证集,填写训练时候使用的超参数就可以一键拉起训练任务。

Qwen-72B-Chat的模型卡片如下图所示:

image.png

我们可以根据实际需求调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

点击“训练”按钮,PAI-QuickStart自动跳转到模型训练页面,并且开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

在训练结束后,可以在输出路径的OSS Bucket中查看每次保存的Checkpoint模型切片,如下所示:

image.png

用户可以根据实际情况,选择最合适的Checkpoint进行推理和部署,具体流程参见这里,本文不再赘述。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
14天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
28 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
17天前
|
编解码 Cloud Native 算法
通义万相:视觉生成大模型再进化
通义万相是阿里云推出的视觉生成大模型,涵盖图像和视频生成。其2.0版本在文生图和文生视频方面进行了重大升级,采用Diffusion Transformer架构,提升了模型的灵活性和可控性。通过高质量美学标准和多语言支持,大幅增强了画面表现力。此外,视频生成方面引入高压缩比VAE、1080P长视频生成及多样化艺术风格支持,实现了更丰富的创意表达。未来,通义万相将继续探索视觉领域的规模化和泛化,打造更加通用的视觉生成大模型。
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
122 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
7天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
96 21
|
6天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
42 18
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
3天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
18 4
|
26天前
|
关系型数据库 机器人 OLAP
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
PolarDB开源社区推出基于云原生数据仓库AnalyticDB和通义千问大模型的“PolarDB知识问答助手”,实现一站式全链路RAG能力,大幅提升查询效率和问答准确率。该系统整合静态和动态知识库,提供高效的数据检索与查询服务,支持多种场景下的精准回答,并持续优化用户体验。欢迎加入钉群体验并提出宝贵意见。
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
|
1月前
|
开发框架 自然语言处理 JavaScript
千问开源P-MMEval数据集,面向大模型的多语言平行评测集
近期,通义千问团队联合魔搭社区开源的多语言基准测试集 P-MMEval,涵盖了高效的基础和专项能力数据集。
千问开源P-MMEval数据集,面向大模型的多语言平行评测集
|
26天前
|
机器学习/深度学习 人工智能 安全
通义视觉推理大模型QVQ-72B-preview重磅上线
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。

相关产品

  • 人工智能平台 PAI