通义千问Qwen-72B-Chat大模型在PAI平台的微调实践

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

作者:熊兮、贺弘、临在

通义千问-72B(Qwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模的大语言模型,在2023年11月正式开源。Qwen-72B的预训练数据类型多样、覆盖广泛,包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上,使用对齐机制打造的基于大语言模型的AI助手。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

使用PAI-DSW快速体验和轻量化微调Qwen-72B-Chat

PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。Qwen-72B-Chat的教程可以在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中检索到,参见下图:

image.png

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。

快速体验Qwen-72B-Chat

首先,我们在DSW调用ModelScope快速体验Qwen-72B-Chat模型进行对话。在安装完ModelScope相关依赖后,我们可以运行如下Python代码:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfig# Note: The default behavior now has injection attack prevention off.tokenizer=AutoTokenizer.from_pretrained("qwen/Qwen-72B-Chat", revision='master', trust_remote_code=True)
# use bf16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()# use fp16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()# use cpu only# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="cpu", trust_remote_code=True).eval()# use auto mode, automatically select precision based on the device.model=AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", revision='master', device_map="auto", trust_remote_code=True).eval()
# 第一轮对话 1st dialogue turnresponse, history=model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。# 第二轮对话 2nd dialogue turnresponse, history=model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。# 第三轮对话 3rd dialogue turnresponse, history=model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》

为了节省显存,ModelScope也支持使用Int4/Int8量化模型:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfigtokenizer=AutoTokenizer.from_pretrained("Qwen/Qwen-72B-Chat-Int4", revision='master', trust_remote_code=True)
model=AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-72B-Chat-Int4",
device_map="auto",
trust_remote_code=True).eval()
response, history=model.chat(tokenizer, "你好", history=None)

轻量化微调Qwen-72B-Chat

轻量化微调Qwen-72B-Chat最佳实践支持最主流的轻量化微调算法LoRA,并且需要使用GU108(80GB)4卡及以上资源进行计算。以下,我们简述轻量化微调Qwen-72B-Chat的算法流程。首先,我们下载Qwen-72B-Chat的Checkpoint和用于LoRA微调的数据集,用户也可以按照上述格式自行准备数据集。

defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
qwen72b_url=f"http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/qwen72b/Qwen-72B-Chat-sharded.tar"aria2(qwen72b_url, qwen72b_url.split("/")[-1], "/root/")
!cd/root&&tar-xvfQwen-72B-Chat-sharded.tar!wget-chttp://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu.aliyuncs.com/qwen72b/sharegpt_zh_1K.json-P/workspace/Qwen

第二步,我们可以修改示例命令的超参数,并且拉起训练任务。

!cd/workspace/Qwen&&CUDA_DEVICE_MAX_CONNECTIONS=1torchrun--nproc_per_node8 \
--nnodes1 \
--node_rank0 \
--master_addrlocalhost \
--master_port6001 \
finetune.py \
--model_name_or_path/root/Qwen-72B-Chat-sharded \
--data_pathsharegpt_zh_1K.json \
--bf16True \
--output_dir/root/output_qwen \
--num_train_epochs1 \
--per_device_train_batch_size1 \
--per_device_eval_batch_size1 \
--gradient_accumulation_steps8 \
--evaluation_strategy"no" \
--save_strategy"steps" \
--save_steps1000 \
--save_total_limit1 \
--learning_rate3e-4 \
--weight_decay0.1 \
--adam_beta20.95 \
--warmup_ratio0.01 \
--lr_scheduler_type"cosine" \
--logging_steps1 \
--report_to"none" \
--model_max_length2048 \
--lazy_preprocessTrue \
--use_lora \
--gradient_checkpointing \
--deepspeedfinetune/ds_config_zero3.json

当训练结束后,将LoRA权重合并到模型Checkpoint。

frompeftimportAutoPeftModelForCausalLMmodel=AutoPeftModelForCausalLM.from_pretrained(
'/root/output_qwen', # path to the output directorydevice_map="auto",
trust_remote_code=True).eval()
merged_model=model.merge_and_unload()
merged_model.save_pretrained('/root/qwen72b_sft', max_shard_size="2048MB", safe_serialization=True)
!cp/root/Qwen-72B-Chat-sharded/qwen.tiktoken/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenization_qwen.py/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenizer_config.json/root/qwen72b_sft/

最后,我们使用轻量化微调后的Qwen-72B-Chat模型进行推理。以推理框架vllm为例,推理接口如下:

fromvllmimportLLMfromvllm.sampling_paramsimportSamplingParamsqwen72b=LLM("/root/qwen72b_sft/", tensor_parallel_size=2, trust_remote_code=True, gpu_memory_utilization=0.99)
samplingparams=SamplingParams(temperature=0.0, max_tokens=512, stop=['<|im_end|>'])
prompt="""<|im_start|>system<|im_end|><|im_start|>user<|im_end|>Hello! What is your name?<|im_end|><|im_start|>assistant"""output=qwen72b.generate(prompt, samplingparams)
print(output)

其中,tensor_parallel_size需要根据DSW示例配置中的GPU数量进行调整。

使用PAI-QuickStart全量参数微调Qwen-72B-Chat

快速开始(PAI-QuickStart)是PAI产品组件,集成了国内外AI开源社区中优质的预训练模型,支持零代码实现全量参数微调Qwen-72B-Chat。PAI-QuickStart的这一款全量参数微调组件使用PAI灵骏智算服务作为底层计算资源,使用4机32卡(每卡80GB显存)进行训练。Qwen-72B-Chat的全量参数微调基于Megatron-LM的训练流程,支持了数据并行、算子拆分、流水并行、序列并行、选择性激活重算、Zero显存优化等技术,大幅提升大模型分布式训练效率。在这一组件中,我们提前对模型Checkpoint进行了切分,适配多机多卡环境训练,用户只需要根据格式上传训练集和验证集,填写训练时候使用的超参数就可以一键拉起训练任务。

Qwen-72B-Chat的模型卡片如下图所示:

image.png

我们可以根据实际需求调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

点击“训练”按钮,PAI-QuickStart自动跳转到模型训练页面,并且开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

在训练结束后,可以在输出路径的OSS Bucket中查看每次保存的Checkpoint模型切片,如下所示:

image.png

用户可以根据实际情况,选择最合适的Checkpoint进行推理和部署,具体流程参见这里,本文不再赘述。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
19天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
46 1
|
28天前
|
人工智能 边缘计算 自然语言处理
DistilQwen2:通义千问大模型的知识蒸馏实践
DistilQwen2 是基于 Qwen2大模型,通过知识蒸馏进行指令遵循效果增强的、参数较小的语言模型。本文将介绍DistilQwen2 的技术原理、效果评测,以及DistilQwen2 在阿里云人工智能平台 PAI 上的使用方法,和在各开源社区的下载使用教程。
|
29天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
74 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
2月前
|
自然语言处理 Java API
Spring Boot 接入大模型实战:通义千问赋能智能应用快速构建
【10月更文挑战第23天】在人工智能(AI)技术飞速发展的今天,大模型如通义千问(阿里云推出的生成式对话引擎)等已成为推动智能应用创新的重要力量。然而,对于许多开发者而言,如何高效、便捷地接入这些大模型并构建出功能丰富的智能应用仍是一个挑战。
141 6
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
28 0
|
2月前
|
人工智能 机器人
多模态大模型活动 | 使用 PAI×LLaMA Factory 搭建文旅问答机器人
LLaMA Factory 是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架,GitHub 星标超过3万。本次活动通过 PAI×LLaMA Factory 微调 Qwen2-VL 模型,快速搭建文旅领域知识问答机器人,期待看到您与 AI 导游的创意对话!

相关产品

  • 人工智能平台 PAI