通义千问Qwen-72B-Chat大模型在PAI平台的微调实践

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

作者:熊兮、贺弘、临在

通义千问-72B(Qwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模的大语言模型,在2023年11月正式开源。Qwen-72B的预训练数据类型多样、覆盖广泛,包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上,使用对齐机制打造的基于大语言模型的AI助手。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。

使用PAI-DSW快速体验和轻量化微调Qwen-72B-Chat

PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。Qwen-72B-Chat的教程可以在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中检索到,参见下图:

image.png

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。

快速体验Qwen-72B-Chat

首先,我们在DSW调用ModelScope快速体验Qwen-72B-Chat模型进行对话。在安装完ModelScope相关依赖后,我们可以运行如下Python代码:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfig# Note: The default behavior now has injection attack prevention off.tokenizer=AutoTokenizer.from_pretrained("qwen/Qwen-72B-Chat", revision='master', trust_remote_code=True)
# use bf16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()# use fp16# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()# use cpu only# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", device_map="cpu", trust_remote_code=True).eval()# use auto mode, automatically select precision based on the device.model=AutoModelForCausalLM.from_pretrained("qwen/Qwen-72B-Chat", revision='master', device_map="auto", trust_remote_code=True).eval()
# 第一轮对话 1st dialogue turnresponse, history=model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。# 第二轮对话 2nd dialogue turnresponse, history=model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。# 第三轮对话 3rd dialogue turnresponse, history=model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》

为了节省显存,ModelScope也支持使用Int4/Int8量化模型:

frommodelscopeimportAutoModelForCausalLM, AutoTokenizerfrommodelscopeimportGenerationConfigtokenizer=AutoTokenizer.from_pretrained("Qwen/Qwen-72B-Chat-Int4", revision='master', trust_remote_code=True)
model=AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-72B-Chat-Int4",
device_map="auto",
trust_remote_code=True).eval()
response, history=model.chat(tokenizer, "你好", history=None)

轻量化微调Qwen-72B-Chat

轻量化微调Qwen-72B-Chat最佳实践支持最主流的轻量化微调算法LoRA,并且需要使用GU108(80GB)4卡及以上资源进行计算。以下,我们简述轻量化微调Qwen-72B-Chat的算法流程。首先,我们下载Qwen-72B-Chat的Checkpoint和用于LoRA微调的数据集,用户也可以按照上述格式自行准备数据集。

defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
qwen72b_url=f"http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/qwen72b/Qwen-72B-Chat-sharded.tar"aria2(qwen72b_url, qwen72b_url.split("/")[-1], "/root/")
!cd/root&&tar-xvfQwen-72B-Chat-sharded.tar!wget-chttp://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu.aliyuncs.com/qwen72b/sharegpt_zh_1K.json-P/workspace/Qwen

第二步,我们可以修改示例命令的超参数,并且拉起训练任务。

!cd/workspace/Qwen&&CUDA_DEVICE_MAX_CONNECTIONS=1torchrun--nproc_per_node8 \
--nnodes1 \
--node_rank0 \
--master_addrlocalhost \
--master_port6001 \
finetune.py \
--model_name_or_path/root/Qwen-72B-Chat-sharded \
--data_pathsharegpt_zh_1K.json \
--bf16True \
--output_dir/root/output_qwen \
--num_train_epochs1 \
--per_device_train_batch_size1 \
--per_device_eval_batch_size1 \
--gradient_accumulation_steps8 \
--evaluation_strategy"no" \
--save_strategy"steps" \
--save_steps1000 \
--save_total_limit1 \
--learning_rate3e-4 \
--weight_decay0.1 \
--adam_beta20.95 \
--warmup_ratio0.01 \
--lr_scheduler_type"cosine" \
--logging_steps1 \
--report_to"none" \
--model_max_length2048 \
--lazy_preprocessTrue \
--use_lora \
--gradient_checkpointing \
--deepspeedfinetune/ds_config_zero3.json

当训练结束后,将LoRA权重合并到模型Checkpoint。

frompeftimportAutoPeftModelForCausalLMmodel=AutoPeftModelForCausalLM.from_pretrained(
'/root/output_qwen', # path to the output directorydevice_map="auto",
trust_remote_code=True).eval()
merged_model=model.merge_and_unload()
merged_model.save_pretrained('/root/qwen72b_sft', max_shard_size="2048MB", safe_serialization=True)
!cp/root/Qwen-72B-Chat-sharded/qwen.tiktoken/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenization_qwen.py/root/qwen72b_sft/!cp/root/Qwen-72B-Chat-sharded/tokenizer_config.json/root/qwen72b_sft/

最后,我们使用轻量化微调后的Qwen-72B-Chat模型进行推理。以推理框架vllm为例,推理接口如下:

fromvllmimportLLMfromvllm.sampling_paramsimportSamplingParamsqwen72b=LLM("/root/qwen72b_sft/", tensor_parallel_size=2, trust_remote_code=True, gpu_memory_utilization=0.99)
samplingparams=SamplingParams(temperature=0.0, max_tokens=512, stop=['<|im_end|>'])
prompt="""<|im_start|>system<|im_end|><|im_start|>user<|im_end|>Hello! What is your name?<|im_end|><|im_start|>assistant"""output=qwen72b.generate(prompt, samplingparams)
print(output)

其中,tensor_parallel_size需要根据DSW示例配置中的GPU数量进行调整。

使用PAI-QuickStart全量参数微调Qwen-72B-Chat

快速开始(PAI-QuickStart)是PAI产品组件,集成了国内外AI开源社区中优质的预训练模型,支持零代码实现全量参数微调Qwen-72B-Chat。PAI-QuickStart的这一款全量参数微调组件使用PAI灵骏智算服务作为底层计算资源,使用4机32卡(每卡80GB显存)进行训练。Qwen-72B-Chat的全量参数微调基于Megatron-LM的训练流程,支持了数据并行、算子拆分、流水并行、序列并行、选择性激活重算、Zero显存优化等技术,大幅提升大模型分布式训练效率。在这一组件中,我们提前对模型Checkpoint进行了切分,适配多机多卡环境训练,用户只需要根据格式上传训练集和验证集,填写训练时候使用的超参数就可以一键拉起训练任务。

Qwen-72B-Chat的模型卡片如下图所示:

image.png

我们可以根据实际需求调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

点击“训练”按钮,PAI-QuickStart自动跳转到模型训练页面,并且开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

在训练结束后,可以在输出路径的OSS Bucket中查看每次保存的Checkpoint模型切片,如下所示:

image.png

用户可以根据实际情况,选择最合适的Checkpoint进行推理和部署,具体流程参见这里,本文不再赘述。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
20天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
278 109
|
26天前
|
存储 人工智能 自然语言处理
告别文字乱码!全新文生图模型Qwen-Image来咯
通义千问团队开源了Qwen-Image,一个20B参数的MMDiT模型,具备卓越的文本渲染和图像编辑能力。支持复杂中英文文本生成与自动布局,适用于多场景图像生成与编辑任务,已在魔搭社区与Hugging Face开源。
300 2
|
1月前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
337 23
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
178 6
|
1月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
637 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
3天前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
57 1
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
21天前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
94 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
14天前
通义千问Image模型使用指南
该表格展示了多个设计场景,包括模型选择、复制粘贴提示词、一键生图等步骤。每个步骤配有详细描述及示意图,呈现了不同主题如商业海报、IP主视觉、品牌包装、街拍风格等的设计构思与实现方式。

相关产品

  • 人工智能平台 PAI