Python实现多元线性回归模型(statsmodels OLS算法)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: Python实现多元线性回归模型(statsmodels OLS算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

回归问题是一类预测连续值的问题,而能满足这样要求的数学模型称作回归模型,本项目介绍的线性回归就是回归模型中的一种。线性回归模型属于经典的统计学模型,该模型的应用场景是根据已知的变量(即自变量)来预测某个连续的数值变量(即因变量)。例如餐厅根据每天的营业数据(包括菜谱价格、就餐人数、预定人数、特价菜折扣等)预测就餐规模或营业额;网站根据访问的历史数据(包括新用户的注册量、老用户的活跃度、网页内容的更新频率等)预测用户的支付转化率;医院根据患者的病历数据(如体检指标、药物服用情况、平时的饮食习惯等)预测某种疾病发生的概率。本项目应用OLS多元线程回归模型进行广告销售收入的预测分析。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

TV

电视渠道

2

Radio

广播渠道

3

Newspaper

报纸渠道

4

Sales

产品销售额

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有4个变量,数据中无缺失值。

关键代码:

image.png

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 Sales变量的折线图

用Matplotlib工具的plot()方法绘制折线图:

image.png

4.2 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 散点图拟合线分析

image.png

从上面图中可以看到,TV变量和Sales变量成线性相关,在电视渠道投放的广告金额越大,产品的销售额也越大。

5.构建多元线性回归模型

主要使用OLS算法,用于目标回归。

5.1模型构建

关键代码如下:

image.png

模型总结输出:

image.png

结果显示,有两种广告渠道的回归系数为正值(TV和Radio),说明这两种渠道的广告可以给销售额带来正向的支撑,而报纸渠道却无法使销售额得到提升(其回归系数为6.647e-05 无限接近于0)。所以,可以得到多元线性回归模型:

Sales=4.5993+0.0120*TV+0.0134*Radio+6.647e-05*Newspaper

在返回的模型概览中,包含F检验和t检验的结果,其中F统计量值为563.4,对应的概率值p4.64e-93远远小于0.05,说明应该拒绝原假设,认为模型是显著的;在各自变量的t统计量中,唯有Newspaper变量所对应的概率值p(0.928)大于0.05,说明不能拒绝原假设,认为该变量是不显著的,无法认定其是影响销售额的重要因素。

对于F检验来说,如果无法拒绝原假设,则认为模型是无效的,通常的解决办法是增加数据量、改变自变量或选择其他的模型;对于t检验来说,如果无法拒绝原假设,则认为对应的自变量与因变量之间不存在线性关系,通常的解决办法是剔除该变量或修正该变量(如因变量与自变量存在非线性关系时,选择对应的数学转换函数,对其修正处理)。根据返回的fit模型的概览信息,由于Newspaper变量的t检验结果是不显著的,故可以探索其与因变量Sales之间的散点关系,如果二者确实没有线性关系,可以将Newspaper从模型中剔除。

image.png

报纸广告与销售额之间的散点关系图图中自变量Newspaper与因变量Sales之间的散点关系并没有呈现明显的线性关系或非线性关系,故可以认为两者不存在互相依赖关系。既然如此,接下来要做的就是将Newspaper变量从模型中剔除

5.2模型优化

关键代码:

image.png

模型摘要输出:

image.png

多元线性回归模型拟合后的概览信息对模型重新调整后,得到的新模型仍然通过了显著性检验,而且每个自变量所对应的系数也是通过显著性检验的。故最终得到的模型为:

Sales= 4.6084+ 0.0120*TV+ 0.0134*Radio

对于该回归模型中的系数是这样解释的:在其他条件不变的情况下,TV渠道的成本每增加一个单位,将使销售额增加0.0120个单位;广播渠道的成本每增加一个单位,会使销售0.0134个单位。

5.3基于回归模型识别异常点

回归模型其计算过程会依赖于自变量的均值,,均值的最大弊端是其容易受到异常点(或极端值)的影响。所以,如果建模数据中存在异常点,一定程度上会影响到模型的有效性,那么该如何利用模型来识别样本中的异常点,并对其做相应的处理呢?对于线性回归模型来说,通常利用帽子矩阵、DFFITS准则学生化残差进行异常点检测。

学生化残差需要注意的是,在DFFITS准则的公式中,乘积的第二项实际上是学生化残差,它也可以用来判定第i个样本是否为异常点,判断标准如下:

image.png

关键代码:

image.png

image.png

这里使用学生化残差,当学生化残差大于2时,即认为对应的数据点为异常值。结果显示,通过学生化残差识别出了异常值,并且异常比例为3.68%。由于异常比例非常小,故可以考虑将其直接从数据集中删除,由此继续建模将会得到更加稳定且合理的模型。具体代码如下

image.png

模型摘要信息:

image.png

多元线性回归模型的概览信息如图所示,排除异常点之后得到模型,不管是模型的显著性检验还是系数的显著性检验,各自的概率p值均小于0.05,说明它们均通过显著性检验。

5.4模型预测

关键代码:

image.png

预测结果:

image.png

 

6.模型评估

6.1评估指标及结果 

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

OLS多元线性回归模型

可解释方差值

0.9371

平均绝对误差

1.1024

均方误差

1.6381

R方

0.9367

从上表可以看出,R方93.67%%  可解释方差值93.71%,OLS多元线性回归模型比较优秀,效果非常好。

关键代码如下:

image.png

6.2 真实值与预测值对比图

image.png

从上图可以看出真实值和预测值波动基本一致,模型拟合效果非常棒。

7.结论与展望

综上所述,本文采用了OLS多元线性回归模型,最终证明了我们提出的模型效果良好。可用于日常产品销售额的研究。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1ab-d_zXbHoaHmgzW-XcZgQ 
提取码:69pa
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
20 5
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
5天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
4天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
5天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。

热门文章

最新文章