"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。

机器学习模型的训练和部署是一个复杂且多步骤的过程,涉及数据准备、模型训练、性能评估及最终部署等多个环节。为了有效管理这一过程,Databricks与Mlflow的结合提供了一个强大且灵活的解决方案。本文将详细介绍如何使用Databricks和Mlflow进行机器学习模型的训练和部署。

准备工作
首先,确保你已经在Databricks环境中创建了集群,并安装了Mlflow库。Databricks是一个统一的数据分析和机器学习平台,支持多种计算框架,而Mlflow则是一个用于管理机器学习生命周期的开源工具。

安装Mlflow
在Databricks的notebook中,你可以通过pip命令安装Mlflow:

bash
%pip install mlflow
机器学习模型的训练
数据准备
假设你已经有了准备好的数据集,存储在Databricks的DBFS(Databricks文件系统)或连接到外部数据源。以下是一个简单的示例,展示如何加载数据并准备训练集:

python

假设使用pandas和sklearn

import pandas as pd
from sklearn.model_selection import train_test_split

加载数据

data = pd.read_csv("dbfs:/path/to/data.csv")

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(data.drop('target', axis=1), data['target'], test_size=0.2, random_state=42)
训练模型
使用Mlflow进行模型训练时,可以通过Mlflow的Tracking功能记录实验参数、性能指标等。

python
import mlflow
from sklearn.linear_model import LogisticRegression

初始化Mlflow实验

with mlflow.start_run():

# 设置参数  
mlflow.log_param("learning_rate", 0.01)  

# 训练模型  
model = LogisticRegression(max_iter=100)  
model.fit(X_train, y_train)  

# 记录性能指标  
mlflow.log_metric("accuracy", model.score(X_test, y_test))  

# 记录模型  
mlflow.sklearn.log_model(model, "model_name")

模型的部署
使用Mlflow部署模型
训练完模型后,可以使用Mlflow的Model功能进行模型的部署。Mlflow支持多种部署方式,包括REST API、Docker容器等。

bash

部署模型

mlflow models serve -m runs://model -p 1234
其中,是Mlflow中模型训练运行的唯一标识符。运行上述命令后,模型将被部署到本地服务器的1234端口上,你可以通过REST API调用模型进行预测。

总结
通过使用Databricks和Mlflow,你可以有效地管理机器学习模型的训练和部署过程。Databricks提供了强大的数据处理和计算能力,而Mlflow则通过其Tracking、Projects、Models和Registry等核心功能,帮助你追踪实验、管理模型和部署服务。上述示例展示了从数据准备、模型训练到模型部署的整个过程,希望能为你的机器学习项目提供帮助。

相关文章
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
27天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
114 1
|
1月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
43 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
157 8
|
4月前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
106 1
|
4月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
96 0
|
4月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
52 0

热门文章

最新文章

相关产品

  • Databricks 数据洞察