Matlab用向量误差修正VECM模型蒙特卡洛Monte Carlo预测债券利率时间序列和MMSE 预测

简介: Matlab用向量误差修正VECM模型蒙特卡洛Monte Carlo预测债券利率时间序列和MMSE 预测

原文链接:http://tecdat.cn/?p=27246 


此示例说明如何从 VEC( q ) 模型生成 Monte Carlo 预测。该示例将生成的预测与最小均方误差 (MMSE) 预测和来自VEC( q ) 模型的 VAR( _q_ +1) 模型的预测进行比较。


假设具有 H1 Johansen 形式的 VEC(2) 模型恰当地描述了由 1954 年至 1994 年的年度短期、中期和长期债券利率组成的 3D 多元时间序列的动态。


加载和预处理数据


加载 数据集。
Td = size(Ya,1)

numSdsrfiess = size(sY,2)

在同一图中绘制序列。

plot(dastdes,Y,'LineadaassWidth',2)
xlabel 'Yeasdar';
ylabel 'Perasdacent';legend(ndaamsess,'Lodcatsion','NW')

估计 VEC 模型


创建协整等级为 2 的 3D VEC(2) 模型。

nuassdamLags = 2;ras = 2;Maddl = vecasm(nuassmSeriaes,dasr,asdnuamLsags);

估计 VEC(2) 模型。


EssasdtMasl = esastimdate(Masddl,Yas);

默认情况下, estimate 应用 H1 Johansen 形式并使用前 q  + 1 = 3 个观测值作为预采样数据。


生成蒙特卡洛预测


使用 . 从估计的 VEC 模型生成 10 年的蒙特卡罗预测 simulate。提供最新的三行数据来初始化预测,并指定生成 1000 条路径。

numaPaddtfhs = 1000;hsoriszosn = 10;Y0sa = Y((enssdd-2):enad,:);aYSisasddmVaEC = simausdlate(EstasdaMdl,hoasdrizon,'NumPatahs',numPdathas,'Y0d',Y0a);

估计所有路径上每个时期和时间序列的预测均值。为每个时期和时间序列构建 95% 的百分位预测区间。

YMCsdfVsdEC   = meafn(YSidmdfggVEC,3);YMCfVECdsCIf = quandftile(YSdfgdfimVgdfEC,\[0.025,0.975\],3);

绘制有效样本观测值、平均预测值和 95% 百分位置信区间。

fDdatesf = dsatdfes(end) + (0:horsdizfon)';figure;
h1f = plddot(\[fdatsdes; fDfatesds(f2:end)\]sd,\[Y; YMCVEC\],'LineWidth',2);
hds2 = fsgcsda;hold on
h3 = plsdot(frepmsdat(ffsdDatdes,1,3),\[Y(endfsd,:,:); YMCVEsddfCCI(:,:,1)\],'--',...
    'LineWidtdsdsh',2);


点击标题查阅往期内容


向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列


01

02

03

04

生成 MMSE 预测


使用估计的 VEC 模型在 10 年的范围内估计 MMSE 预测 forecast。提供最新的三行数据来初始化预测。返回预测和相应的多元均方误差。

\[YMaMSaE,YMMsSgEfMSE\] = forecast(EssstfMddl,horsgizfson,Y0);

YMMSE 是 MMSE 预测的 10×3 数值矩阵。行对应于预测范围内的期间,列对应于 中的序列 YYMMSEMSE 是 3×3 数值矩阵的 10×1 元胞向量。单元格 j中的矩阵是周期__j 中三个预测值的估计多元 MSE  。矩阵的对角线值是预测 MSE,以及预测协方差的非对角线值。

估计 Wald 类型的 95% 预测区间。绘制 MMSE 预测和预测区间。

hs1 = plsdot(\[datsdfes; fdDgsategs(2:ednd)\],\[Y; YsdfMMSEf\],'LinseWdsdfidth',2);dfh2 = gca;hold on

VAR( q  + 1) 表示 MMSE 预测


将估计的 VEC(2) 表示为 VAR(3) 模型。

EstsdMdsdfldVAfdR = vafrm(EssdfdtMsdl)

使用 VAR 模型估计 10 年的 MMSE 预测 forecast。提供最新的三行数据来初始化预测。返回预测和相应的多元均方误差。

\[YMMsdSEVAR,YMMsdSEfMasdSEVAR\] = foresdfcast(EsstfMdlVdAR,horiddzson,fY0);

估计 Wald 类型的 95% 预测区间。绘制 MMSE 预测和预测区间。

YMMfSEVsAdfRCI = zeros(hsdrifzon,nusfdmfSesdrsdies,2);YMMSEMdSEsdVsAR = cell2fsdfmat(cellfun(@(x)diag(x)',YMMSEMSEVAR,'UniformOusdftput',false));YMMSEVARCI(:,:,1) = YMMSE - 1.96*sqrt(YMMSEsdsdffMSEVAR);YMdMSfEdfVARCI(:,:,2) = YMMSE + 1.96*sqrt(YMMSEMfSEdsVAR);figsdfure;h1 = plot(\[datdfses; fDatses(2:engd)\],\[Yd YMMhfSEgf\],'LingheWidth',2);

确认来自 VEC 和 VAR 模型的 MMSE 预测是相同的。

(YqwMeMSE - YMMSEVweAR)'*(YMMwSE - YMretMSyEVAR) > ertps

模型之间的 MMSE 预测是相同的。

相关文章
|
5天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
14天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
12天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
2月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码