R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

简介: R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

Boosting算法是一种把若干个分类器整合为一个分类器的方法,也就是一种集成分类方法(Ensemble Method)

计量经济学的视角

可以从计量经济学的角度理解提升方法(Boosting)的内容。

这里的目标是要解决:

损失函数ℓ,以及预测器集合M。这是一个优化问题。这里的优化是在函数空间中进行的,是一个简单的优化问题。从数值的角度来看,优化是用梯度下降来解决的(这就是为什么这种技术也被称为梯度提升)。

同样,最佳值不是某个实值x⋆,而是某个函数m⋆。因此,在这里我们会有类似m

其中右边的式子也可以写成

从后者可以清楚地看到f是我们在剩余残差上拟合的模型。

我们可以这样改写:定义

目标是拟合一个模型,使 ri,k=h⋆(xi),当我们有了这个最优函数。设 mk(x)=mk-1(x)+γkh⋆(x)。

这里有两个重要点。

首先,我们拟合一个模型,通过一些协变量 x来解释 y。然后考虑残差 ε,并以相同的协变量 x来解释它们。如果你尝试用线性回归,你会在第1步结束时完成,因为残差 ε与协变量  x是正交的:我们没有办法从它们那里学习。在这里它是有效的,因为我们考虑的是简单的非线性模型。而实际上,可以使用的东西是添加一个收缩参数。不要考虑 ε=y-m(x),而是 ε=y-γm(x) 。弱学习的概念在这里是极其重要的。我们收缩得越多,花的时间就越长。不断从错误中学习是件好事。但从启发式的角度来看,当我们开始过度拟合时,我们应该停止。而这可以通过对初始数据集进行分割训练验证或使用交叉验证来观察。

样条曲线

我们尝试用样条曲线来学习。因为标准的样条曲线有固定的结点,

在这里,我们将(以某种方式)优化结点位置。为了说明问题,这里使用的是高斯回归,而不是分类。考虑以下数据集(只有一个协变量):

对于结点的最佳选择,我们可以使用

lsgen(x, y, degree = 1, numknot = 2)

在5%的收缩参数下,代码简单如下

v=.05
fit=lm(y~bs(x,degree=1,knots=optknot))
yp=predict(fit,newdata=df)
 yr= y - v*yp
YP=v*yp
for(t in 1:200){
fit=lm(yr~bs(x,degree=1,knots= optknot) )
 
 
plot(  x,  y,ylab="",xlab="")
lines(  x,y,type="l" )

为了直观地看到100次迭代的结果,使用动态可视化

viz(100)

图1

很明显,我们看到,在这里从数据中学习。

决策回归树

我们尝试一下别的模型。如果我们在每一步都考虑决策树,而不是线性逐步回归(这是用线性样条考虑的)。

v=.1 
rpart(y~x,data=df)
yp=predict(fit)
 yr= y -  yp
YP=v*yp
for(t in 1:100){
 predict(fit,newdata=df)

同样,为了将学习过程动态可视化,使用

plot( x, y,ylab="",xlab="")
lines( x,y,type="s"
fit=rpart(y~x,data=df)

图2

这一次,通过这些树我们不仅有一个好的模型,而且与我们使用单一的回归树所能得到的模型不同。

如果我们改变收缩参数呢?


为了直观地看到缩参数改变的结果,使用动态可视化

viz=function(v=0.05)
 f$yr=df$y -v*yp
 YP=v*yp
 for(t in 1:100){
 yp=predict(fit,newdata=df)
 yr= yr - v*yp
 lines(df$x,y,type="s"

图3

显然,这个收缩参数有影响。它必须很小才能得到一个好的模型。这就是使用弱学习来获得好的预测的想法。

分类和Adaboost

现在我们了解了bootsting的工作原理,并把它用于分类。这将更加复杂,因为残差在分类中通常信息量不大,而且它很难缩减。因此,让我们尝试一些稍微不同的方法,来介绍adaboost算法,AdaBoost是最著名的Boosting族算法。

在我们最初的讨论中,目标是最小化一个凸的损失函数。在这里,如果我们把类表示为{-1,+1},我们考虑的损失函数是 (与逻辑模型相关的损失函数是

我们在这里所做的与梯度下降(或牛顿算法)有关。之前,我们是从误差中学习的。在每个迭代中,计算残差,并对这些残差拟合一个(弱)模型。这个弱模型的贡献被用于梯度下降优化过程。

这里的情况会有所不同,因为更难使用残差,空残差在分类中从不存在。所以我们将增加权重。最初,所有的观察值都有相同的权重。但是,迭代之后,我们将增加预测错误的个体的权重,减少预测正确的个体的权重。

我们从ω0=1n开始,然后在每一步拟合一个模型(分类树),权重为ωk(我们没有讨论树的算法中的权重,但实际上在公式中是很直接的)。让hωk表示该模型(即每个叶子里的概率)。然后考虑分类器 ,它返回一个在{-1,+1}的值。然后设

Ik是被错误分类的个体集合。

然后设置

并在最后更新模型时使用

以及权重

除以总和,以确保总和是1。如前所述,我们可以包括一些收缩参数。为了直观地看到这个过程的收敛性,我们将在我们的数据集上绘制总误差。

for(i in 1:n_iter)rfit = rpart(y~., x, w, method="class")
g = -1 + 2*(predict(rfit,x)\[,2\]>.5) 
e = sum(w*(y*>0))
error\[i\] = mean(1\*f\*y<0)
plot(seq(1,n_iter),error

图4


在这里,我们面临一个机器学习中的经典问题:我们有一个完美的模型,误差为零。用多项式拟合:有10个观察值,9度的多项式,拟合很好。将我们的数据集一分为二,一个训练数据集,一个验证数据集。

train\_car = car\[id\_train,\]
test\_car= car\[-id\_train,\]

我们在第一个模型上构建模型,并在第二个模型上检查

for(i in 1:n_iter){
  rfit = rpart(y\_train~., x\_train, w_train, method="class")
  train\_error\[i\] = mean(1\*f\_train\*y_train&lt;0)
  test\_error\[i\] = mean(1\*f\_test\*y_test&lt;0)}
plot(seq(1,n\_iter),test\_error)

图5


在这里,和以前一样,经过80次迭代,我们在训练数据集上有一个不错的模型,但在验证数据集上表现得很差。在20次迭代后,效果比较好。

R函数:梯度提升(_GBM_)算法

也可以使用R函数。

gbm(y~ .,n.trees = 200,shrinkage = .01,cv.folds = 5

这里考虑的是交叉验证,而不是训练验证,以及用得是森林而不是单棵树,当然,输出要好得多(这里收缩参数是一个非常小的参数,而且学习非常慢)。

图6



相关文章
|
6月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
10月前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
755 7
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
机器学习/深度学习 运维 算法
算法之--决策树算法
8月更文挑战第29天
|
机器学习/深度学习
R语言模型评估:深入理解混淆矩阵与ROC曲线
【9月更文挑战第2天】混淆矩阵和ROC曲线是评估分类模型性能的两种重要工具。混淆矩阵提供了模型在不同类别上的详细表现,而ROC曲线则通过综合考虑真正率和假正率来全面评估模型的分类能力。在R语言中,利用`caret`和`pROC`等包可以方便地实现这两种评估方法,从而帮助我们更好地理解和选择最适合当前任务的模型。
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
203 0