算法系列--动态规划--背包问题(1)--01背包介绍(上)

简介: 算法系列--动态规划--背包问题(1)--01背包介绍

💕"趁着年轻,做一些比较cool的事情"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍

大家好,今天为大家带来的是算法系列--动态规划--背包问题(1)--01背包介绍

一.什么是背包问题

背包问题是动态规划中经典的一类问题,经常在笔试面试中出现,是非常具有区分度的题目

背包问题的种类很多,变式多,也就使得背包问题的难度一般都很高,而01背包问题属于其中最基础,可以当做思考模版的题目,下面就来讲解–01背包问题

前情提示:如果你没有动态规划的基础,还是尽量不要通过背包问题入门,先去做上几十到动态规划的题目再来学习背包问题

二.01背包问题

分析:

首先要明确这道题目一共有两问,第一问求的是在不超过背包限制的前提下,可以得到的最大价值

,第二问求的是在刚好装满背包的情况下,可以得到的最大价值

第一问:求这个背包至多能装多大价值的物品?

我们先来模拟一下背包问题的执行过程,其实就是从所有物品中选择合适的物品填入背包,来实现价值的最大化,在选物品时我们是可以任意选择的,这不就类似于在任意的子序列中,选出最大xxxx的问题么?

好了,相信大家也能分析到这里,说:这不就是一个简单的子序列问题么,这有啥难得,于是兴致勃勃的写下状态表示

  • dp[i]:表示在[1,i]之间的所有物品中,可以实现的最大价值物品的价值

(注:下标我们从1开始是因为这是dp问题常用的一种初始化dp表的方式)

但是我们在填i位置的值时,需要考虑此时背包容量对我们装填的影响(比如如果背包的容量很小,只有1,而我们i物品的体积是99,肯定无法装进去)

所以我们还需要一个状态来表示背包体积,也就是每走到一个物品都要保证符合容量大小,于是状态表示如下:

  • dp[i][j]:在[1,i]之间的所有物品中,体积不超过j,可以实现的最大价值物品的价值

我们可以验证一下这个状态表示能否返回最终的结果呢?可以,dp[n][V]就表示在所给定的n个物品中,体积不超过背包的最大体积V,选择可以实现最大价值的物品的价值

接下来就来推到状态转移方程:

状态转移方程一般就是根据最后一个位置的状态去讨论,在本题中,分类讨论的依据就是包不包括最后一个物品

注意:选nums[i]这种情况不是一定能实现的,需要满足此时的背包体积大于第i个物品的体积,也就是需要满足j - v[i] >= 0

返回值:dp[n][V]

以上就是第一问的详细分析过程

第二问:若背包恰好装满,求至多能装多大价值的物品?

相较于第一问多了体积的限制,必须要满足体积的前提下实现价值的最大化,但是大致的思路和第一问很像,只需要在第一问的基础上做出一些改变即可:

  • dp[i][j]:表示在[0,i]区间内的物品,在体积为j的前提下,可以实现的最大价值

算法系列--动态规划--背包问题(1)--01背包介绍(下)https://developer.aliyun.com/article/1480835?spm=a2c6h.13148508.setting.15.361f4f0eyTL4lb


目录
相关文章
|
7天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
24 2
|
1月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
60 2
动态规划算法学习三:0-1背包问题
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
61 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
1月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
116 0
动态规划算法学习二:最长公共子序列
|
1月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
95 0
|
22天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
9天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。