「Python系列」Python JSON数据解析

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
函数计算FC,每月15万CU 3个月
简介: 在Python中解析JSON数据通常使用`json`模块。`json`模块提供了将JSON格式的数据转换为Python对象(如列表、字典等)以及将Python对象转换为JSON格式的数据的方法。

一、JSON数据解析

在Python中解析JSON数据通常使用json模块。json模块提供了将JSON格式的数据转换为Python对象(如列表、字典等)以及将Python对象转换为JSON格式的数据的方法。

下面是一些使用json模块解析JSON数据的常见方法:

1. 读取和解析JSON文件

如果JSON数据存储在文件中,你可以使用json.load()函数来读取和解析文件内容。

import json

# 打开JSON文件并读取内容
with open('data.json', 'r') as file:
    data = json.load(file)

# 现在data是一个Python对象(列表或字典),你可以像操作普通Python对象一样操作它
print(data)
AI 代码解读

2. 字符串到Python对象的解析

如果JSON数据是字符串格式的,你可以使用json.loads()函数来解析它。

import json

# JSON字符串
json_string = '{"name": "John", "age": 30, "city": "New York"}'

# 将JSON字符串解析为Python字典
data = json.loads(json_string)

# 访问解析后的数据
print(data['name'])  # 输出: John
AI 代码解读

3. Python对象到JSON字符串的转换

如果你想将Python对象转换为JSON格式的字符串,可以使用json.dumps()函数。

import json

# Python字典
data = {
   
    'name': 'John',
    'age': 30,
    'city': 'New York'
}

# 将Python字典转换为JSON字符串
json_string = json.dumps(data)

# 输出JSON字符串
print(json_string)  # 输出: {"name": "John", "age": 30, "city": "New York"}
AI 代码解读

4. 错误处理

在解析JSON数据时,如果数据格式不正确,json.load()json.loads()会抛出json.JSONDecodeError异常。为了处理这种情况,你可以使用try...except语句来捕获异常。

import json

try:
    with open('data.json', 'r') as file:
        data = json.load(file)
except json.JSONDecodeError as e:
    print(f"解析JSON时出错: {e}")
AI 代码解读

5. JSON数据的格式化输出

当你需要将JSON数据以美观的格式输出时,可以使用indent参数。

import json

data = {
   
    'name': 'John',
    'age': 30,
    'city': 'New York'
}

# 以美观的格式输出JSON字符串
json_string = json.dumps(data, indent=4)

print(json_string)
AI 代码解读

输出将是格式化后的JSON字符串:

{
   
    "name": "John",
    "age": 30,
    "city": "New York"
}
AI 代码解读

以上就是在Python中解析JSON数据的基本方法。通过这些方法,你可以轻松地处理JSON格式的数据。

二、Python 编码为 JSON 类型转换对应表

在Python中,将数据类型编码为JSON格式时,Python的内置类型会与JSON类型之间有一个自然的映射关系。以下是Python数据类型和JSON类型之间的对应关系:

Python 类型 JSON 类型 示例
dict JSON object {"name": "John"}
list JSON array ["apple", "banana"]
str JSON string "Hello, world!"
int, float JSON number 42, 3.14
bool JSON boolean True, False
None JSON null null

当使用json.dumps()函数将Python对象转换为JSON字符串时,Python会自动根据这些规则进行类型转换。同样地,当使用json.loads()函数将JSON字符串解析为Python对象时,也会根据这些规则进行反序列化。

需要注意的是,一些Python对象类型(如自定义类、集合、日期等)在默认情况下并不能直接转换为JSON类型。对于这些类型,你需要自定义序列化函数或使用第三方库(如pendulummarshmallow)来处理它们的JSON转换。

例如,自定义类通常需要实现一个to_dict()方法,该方法将类的实例转换为可以序列化为JSON的字典。对于日期对象,你可以使用datetime模块中的isoformat()方法来获得ISO 8601格式的字符串,这个字符串可以直接被转换为JSON字符串。

以下是一个自定义类转换为JSON的示例:

import json
from datetime import datetime

class Person:
    def __init__(self, name, birthdate):
        self.name = name
        self.birthdate = birthdate

    def to_dict(self):
        return {
   
            'name': self.name,
            'birthdate': self.birthdate.isoformat()
        }

# 创建一个Person对象
person = Person('John Doe', datetime(1980, 1, 1))

# 将对象转换为字典
person_dict = person.to_dict()

# 将字典转换为JSON字符串
json_string = json.dumps(person_dict)

print(json_string)
AI 代码解读

输出将是:

{
   "name": "John Doe", "birthdate": "1980-01-01T00:00:00"}
AI 代码解读

在这个例子中,Person类有一个to_dict()方法,它返回一个可以被json.dumps()直接处理的字典。birthdate属性被转换为ISO 8601格式的字符串,这是一个JSON兼容的日期格式。

三、JSON简介

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,它基于 ECMAScript(欧洲计算机协会制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。

JSON 的结构基于以下两种类型:

  1. 值(Value):

    • 字符串(在双引号中)
    • 数字(整数或浮点数)
    • 对象(在花括号中)
    • 数组(在方括号中)
    • 布尔值(truefalse
    • null
  2. 数据类型:

    • 字符串:由双引号包围的任意数量的 Unicode 字符。
    • 数字:整数或浮点数。
    • 对象:无序的键值对集合,键是字符串,值可以是任意类型的 JSON 值。
    • 数组:有序的值的集合,值可以是任意类型的 JSON 值。
    • 布尔值:truefalse
    • null:表示空值或“无”值。

JSON 示例:

{
   
  "name": "John",
  "age": 30,
  "city": "New York",
  "isStudent": false,
  "subjects": [
    "Math",
    "Science",
    "English"
  ],
  "address": {
   
    "street": "123 Main St",
    "city": "New York",
    "state": "NY",
    "postalCode": "10001"
  }
}
AI 代码解读

在这个示例中:

  • "name", "age", "city", "isStudent" 是键,它们的值分别是字符串、数字、字符串和布尔值。
  • "subjects" 是一个数组,包含三个字符串元素。
  • "address" 是一个对象,包含街道、城市、州和邮政编码等键值对。

JSON 的特点:

  • 易于阅读: JSON 的格式清晰且结构化的方式使得数据易于人类阅读和理解。
  • 易于编写和解析: 多种编程语言都有库或内置函数来解析和生成 JSON 数据。
  • 数据交换: 由于其通用性,JSON 是一种理想的数据交换格式,可以在不同的系统和服务之间轻松交换数据。
  • 语言无关: JSON 是一种语言无关的数据格式,这意味着任何能够处理文本的程序都可以处理 JSON。

JSON 的使用场景:

  • Web 服务与客户端之间的数据交换(如 AJAX 请求)。
  • 配置文件的存储和读取。
  • 数据持久化(如存储到本地文件或数据库中)。
  • 跨平台应用程序之间的数据交换。

由于 JSON 的简洁性和通用性,它已经成为 Web 开发中非常流行的数据交换格式。

四、相关链接

  1. Python下载安装中心
  2. Python官网
  3. Python软件下载
  4. 「Python系列」Python简介及案例
  5. 「Python系列」Python基础语法/数据类型
  6. 「Python系列」Python解释器
  7. 「Python系列」Python运算符
  8. 「Python系列」Python数据结构
  9. 「Python系列」Python元组
  10. 「Python系列」Python集合
  11. 「Python系列」Python列表
目录
打赏
0
0
0
0
22
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
深入解析:使用 Python 爬虫获取淘宝店铺所有商品接口
本文介绍如何使用Python结合淘宝开放平台API获取指定店铺所有商品数据。首先需注册淘宝开放平台账号、创建应用并获取API密钥,申请接口权限。接着,通过构建请求、生成签名、调用接口(如`taobao.items.search`和`taobao.item.get`)及处理响应,实现数据抓取。代码示例展示了分页处理和错误处理方法,并强调了调用频率限制、数据安全等注意事项。此技能对开发者和数据分析师极具价值。
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——封装统一返回的数据结构
本文介绍了在Spring Boot中封装统一返回的数据结构的方法。通过定义一个泛型类`JsonResult<T>`,包含数据、状态码和提示信息三个属性,满足不同场景下的JSON返回需求。例如,无数据返回时可设置默认状态码"0"和消息"操作成功!",有数据返回时也可自定义状态码和消息。同时,文章展示了如何在Controller中使用该结构,通过具体示例(如用户信息、列表和Map)说明其灵活性与便捷性。最后总结了Spring Boot中JSON数据返回的配置与实际项目中的应用技巧。
35 0
|
4天前
|
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——使用 fastJson 处理 null
本文介绍如何使用 fastJson 处理 null 值。与 Jackson 不同,fastJson 需要通过继承 `WebMvcConfigurationSupport` 类并覆盖 `configureMessageConverters` 方法来配置 null 值的处理方式。例如,可将 String 类型的 null 转为 "",Number 类型的 null 转为 0,避免循环引用等。代码示例展示了具体实现步骤,包括引入相关依赖、设置序列化特性及解决中文乱码问题。
18 0
|
4天前
|
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——Spring Boot 默认对Json的处理
本文介绍了在Spring Boot中返回Json数据的方法及数据封装技巧。通过使用`@RestController`注解,可以轻松实现接口返回Json格式的数据,默认使用的Json解析框架是Jackson。文章详细讲解了如何处理不同数据类型(如类对象、List、Map)的Json转换,并提供了自定义配置以应对null值问题。此外,还对比了Jackson与阿里巴巴FastJson的特点,以及如何在项目中引入和配置FastJson,解决null值转换和中文乱码等问题。
21 0
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
淘宝商品详情API接口概述与JSON数据示例
淘宝商品详情API是淘宝开放平台提供的核心接口之一,为开发者提供了获取商品深度信息的能力。以下是技术细节和示例:
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
41 0
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
62 29

云原生

+关注