AI - Agent(人工智能代理)架构

简介: AI Agent(人工智能代理)架构

AI Agent(人工智能代理)架构通常由多个相互关联的组件构成,这些组件共同协作以实现感知环境、进行决策并执行相应动作的任务。下面是一份典型的AI Agent架构概述,包括其主要组成部分及其功能:

1. 感知模块 (Perception Module)

  • 功能:负责从外部世界获取信息,包括但不限于图像、音频、文本、传感器数据等。它通过各种接口或API与外部设备、信息系统或互联网相连,实时或定期收集数据。
  • 子组件
  • 传感器接口:与各类物理传感器(如摄像头、麦克风、GPS、温度传感器等)对接,接收原始数据。
  • 数据预处理器:对传感器数据进行初步清洗、格式转换、特征提取等操作,为后续处理提供适合的输入。
  • 自然语言处理(NLP)组件:解析和理解文本、语音等语言输入,提取语义信息。
  • 计算机视觉(CV)组件:处理图像和视频数据,识别物体、检测动作、理解场景等。
  • 知识获取模块:从外部知识库、数据库、API等途径获取与当前任务相关的背景知识或实时信息。

2. 决策模块 (Decision-Making Module)

  • 功能:基于感知模块提供的信息和内部知识,进行推理、规划、学习,生成针对当前情境的最优或近似最优决策。
  • 子组件
  • 知识表示与推理引擎:存储和处理结构化知识,支持逻辑推理、模糊逻辑、概率推理等,解答与环境状态相关的问题。
  • 规划系统:基于当前状态、目标和环境模型,生成行动序列或策略,以达成特定目标。
  • 学习模块:运用机器学习算法(如监督学习、强化学习、无监督学习等)从历史数据或实时经验中学习,更新模型参数或策略。
  • 目标管理系统:维护和优先化多个可能存在的目标,协调不同目标间的冲突,确保代理行为的整体一致性。

3. 行动模块 (Action Module)

  • 功能:将决策模块产生的决策转化为具体的操作指令,通过与外界交互来改变环境状态或获取进一步信息。
  • 子组件
  • 行为生成器:根据决策结果,生成具体的执行指令或动作序列。
  • 执行器接口:与硬件设备、软件系统或网络服务进行交互,执行指令,如控制机器人运动、发送网络请求、修改数据库记录等。
  • 反馈处理器:接收并解析执行结果的反馈信息,包括执行成功与否、副作用、环境变化等,为感知模块和决策模块提供更新。

4. 学习与适应模块 (Learning & Adaptation Module)

  • 功能:负责持续学习和适应环境变化,优化代理的行为策略。
  • 子组件
  • 在线学习算法:在运行过程中持续学习,根据新的数据或经验调整模型参数或策略。
  • 自我评估与校正:定期或在特定触发条件下评估代理的表现,根据评估结果进行自我调整或触发重新学习。
  • 元学习与迁移学习:在不同任务或环境中学习共享知识,加速新任务的学习过程。

5. 通信模块 (Communication Module)

  • 功能:与其他AI Agent、人类用户或外部系统进行信息交换,协同工作或获取指导。
  • 子组件
  • 消息协议:支持标准化的消息格式和通信协议,便于与其他系统集成。
  • 对话管理:对于具有交互能力的AI Agent,管理与用户的对话流程,理解用户意图,生成恰当的回复。
  • API接口:提供对外服务接口,供其他系统调用AI Agent的功能或获取其状态信息。

6. 状态管理模块 (State Management Module)

  • 功能:维护AI Agent的内部状态,包括但不限于当前任务状态、学习进度、环境模型、历史记录等。
  • 子组件
  • 内存管理:管理短期工作记忆和长期知识存储,确保信息的有效存取。
  • 上下文感知:保持对当前任务、环境条件、时间等上下文信息的敏感性,以便做出适应性决策。
  • 日志与审计:记录Agent的行为、学习过程、关键事件等信息,用于事后分析、故障排查或监管需求。

7. 道德与法规遵从模块 (Ethics & Compliance Module)

  • 功能:确保AI Agent的行为符合道德准则和社会规范,遵守相关法律法规。
  • 子组件
  • 伦理规则库:存储适用于特定领域的伦理原则和行为规范。
  • 合规性检查:在决策过程中嵌入合规性检查环节,避免违法或不道德行为。
  • 透明度与解释性:提供Agent决策过程的解释,以便用户、监管机构或审计人员理解其行为动机和依据。
相关文章
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5749 81
|
5月前
|
存储 人工智能 测试技术
手把手带你入门AI智能体:从核心概念到第一个能跑的Agent
AI智能体是一种能感知环境、自主决策并执行任务的人工智能系统。它不仅能生成回应,还可通过工具使用、计划制定和记忆管理完成复杂工作,如自动化测试、脚本编写、缺陷分析等。核心包括大语言模型(LLM)、任务规划、工具调用和记忆系统。通过实践可逐步构建高效智能体,提升软件测试效率与质量。
|
4月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
505 115
|
4月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
484 117
|
4月前
|
人工智能 定位技术 API
智能体(Agent):AI不再只是聊天,而是能替你干活
智能体(Agent):AI不再只是聊天,而是能替你干活
1090 99
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
797 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
人工智能 Cloud Native 搜索推荐
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
600 0
|
4月前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
827 23
|
4月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
875 6
|
4月前
|
人工智能 监控 Java
Spring AI Alibaba实践|后台定时Agent
基于Spring AI Alibaba框架,可构建自主运行的AI Agent,突破传统Chat模式限制,支持定时任务、事件响应与人工协同,实现数据采集、分析到决策的自动化闭环,提升企业智能化效率。
Spring AI Alibaba实践|后台定时Agent

热门文章

最新文章