m基于yolov2深度学习的车辆检测系统matlab仿真,带GUI操作界面

简介: MATLAB 2022a中实现了YOLOv2目标检测算法的仿真,该算法从Darknet-19提取特征,以实时预测图像内目标的位置和类别。网络结构结合了网格划分、Anchor Boxes和多尺度预测,优化了边界框匹配。核心代码包括数据集划分、预训练ResNet-50加载、YOLOv2网络构建及训练。训练选项设置为GPU加速,使用'sgdm'优化器,200个周期进行训练。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
YOLOv2是一种基于深度学习的实时目标检测算法,由Joseph Redmon等人在论文《YOLO9000: Better, Faster, Stronger》中提出。其主要特点是将图像识别任务视为一个回归问题,网络一次前向传播就能预测出图像中所有目标的位置和类别。
网络结构: YOLOv2采用Darknet-19作为特征提取网络,这是一种卷积神经网络(CNN),能有效抽取图像的深层特征。

    网格划分与Anchor Boxes: 将输入图像划分为SxS个网格,每个网格负责预测B个边界框(anchor boxes)。对于每个网格单元,网络输出T个类别概率(C类物体+C类背景)、B个边界框的坐标(x, y, w, h)以及每个框的置信度(confidence score),表示框内存在物体且预测框准确的程度。公式表示为:

   Confidence Score = IOU(pred_box, true_box) * Objectness Probability

其中IOU代表交并比,Objectness Probability是网络预测的框内存在物体的概率。

坐标预测与归一化: 边界框坐标预测使用相对坐标,公式如下:

x, y:预测框中心相对于网格单元的偏移量,范围[0, 1]。
w, h:预测框宽高相对于整幅图像宽高的比例,经过sigmoid激活后同样范围在[0, 1]。
损失函数: YOLOv2采用了一种复合损失函数,包括位置误差、分类误差以及置信度误差:

    Localization Loss: 对于每个网格单元,只有当它包含ground truth box的中心时,才对其负责预测的边界框计算定位误差,通常采用L1或L2损失。
   Confidence Loss: 包含物体的网格单元,其置信度损失是预测的置信度与真实IOU的交叉熵损失;不包含物体的网格单元,其置信度损失仅考虑背景类别的交叉熵损失。
   Classification Loss: 对于每个预测框,使用softmax函数处理类别概率,并计算多分类交叉熵损失。
    Batch Normalization: 在YOLOv2中广泛使用批量归一化层,加速训练过程,提高模型性能。

    Anchor Boxes优化: YOLOv2采用了K-means聚类方法优化预设锚框尺寸,使得锚框更好地匹配数据集中的物体形状。

    多尺度预测: YOLOv2通过在不同尺度的特征图上进行预测,提高了对不同尺寸目标的检测能力。

3.MATLAB核心程序
```sidx = randperm(size(FACES,1));% 打乱数据集索引
idx = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data = FACES(sidx(1:idx),:);% 选取训练集
test_data = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size = [224 224 3];
num_classes = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
43 59
18 22
23 29
84 109
];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat

% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-4, ...
'MaxEpochs',200,...
'CheckpointPath', Folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);

save model.mat detector
```

相关文章
|
21天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
144 62
使用Python实现深度学习模型:智能质量检测与控制
|
6天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
21 7
|
16天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
21天前
|
机器学习/深度学习 运维 监控
深度学习之异常检测
基于深度学习的异常检测是一项重要的研究领域,主要用于识别数据中的异常样本或行为。异常检测广泛应用于多个领域,如网络安全、金融欺诈检测、工业设备预测性维护、医疗诊断等。
91 2
|
14天前
|
机器学习/深度学习 自然语言处理 监控
深度学习之声音事件检测
基于深度学习的声音事件检测(Sound Event Detection, SED)是指从音频数据中检测并识别出特定的声音事件(如玻璃破碎、狗叫声、警报声等)。这种技术被广泛应用于智能家居、城市监控、医疗监护等领域,随着深度学习的进步,其性能和准确性得到了显著提升。
42 0
|
18天前
|
机器学习/深度学习 数据采集 数据挖掘
深度学习之地形分类与变化检测
基于深度学习的地形分类与变化检测是遥感领域的一个关键应用,利用深度学习技术从卫星、无人机等地球观测平台获取的遥感数据中自动分析地表特征,并识别地形的变化。这一技术被广泛应用于城市规划、环境监测、灾害预警、土地利用变化分析等领域。
58 0
|
18天前
|
机器学习/深度学习 算法框架/工具 Python
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
38 0
|
23天前
|
Python
基于python-django的matlab护照识别网站系统
基于python-django的matlab护照识别网站系统
13 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
169 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
118 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现