暗通道先验算法

简介: 暗通道先验算法

经典暗通道先验模型可以表示为:        


                                       I(x)=J(x)t(x) + A(1-t(x))


       这里I(x)为观察到的有雾图像,也就是我们所得的低质量图像,J(x)为无雾图像,A为大气光成分,为一常数 , t(x)为透射率(0,1)。

       其含义就是图像I(x)为事物反射的光经过雾气衰减后加上雾气反射的大气光的结合所成的像。作者根据对5000多幅无雾图像的暗通道图数据观察发现:约75%的像素值为0,且90%的像素点具有非常低的值,且集中在[0,16]。由此提出暗通道先验理论,即对于一副无雾图像,其暗通道可以表示为:                     eq.png

                           

  eq.png   表示J的任意一个颜色通道,Ω(x)表示在像素点x的窗口。

 根据暗通道先验理论得出:

                             

                                      eq.png

     

       为此我们通过计算去求解透射率 t(x):


       我们对大气散射模型公式(1)进行归一化处理;


                            eq.png


 这里我们假设大气光值A是已知的,并且透射率t(x)为常数,对上面公式的两边同时进行两次取最小值运算,可以得到下面式子:    

                                                            eq.png


 J(x)是代求的去雾图像,根据暗通道先验理论得:



                eq.png


由此可得


                            eq.png


将上述(8)式带入可得透射率t(x)得估计值:


                            eq.png


   在人们的日常生活中,众所周知,就算外面的天气晴朗无云,晴空万里,空气中还是会存在一些微小颗粒物的,当人们欣赏远处的物体时,总是能感受到雾的存在。同时,雾的存在会让人们感受到景深的存在,所以在去雾的同时也有必要保证一点雾的存在,使经去雾处理后得到的无雾图片看起来更加真实自然…。在这个过程中,我们通过引入一个 0 到 1 之间的因子w(传统暗通道先验去雾算法一文中w取值为0.95)对预估透射率t(x)进行修正,如式所示:


                                eq.png


       在图像中,雾浓度越低,其暗通道图越暗,像素点值越小;雾浓度越高,其暗通道图越亮,像素点值越大,因此,暗通道图可以较好的反映雾浓度信息。


       对于大气光值的选取方法有:先在暗通道图中选出图中前0.1%的像素值最大的像素点(这些像素点通常表示的是雾最不透明的点),这些像素点对应到有雾图像中,选取像素值最高的像素点作为大气光A。


       根据大气散射模型,将大气光A和t透射率带入式(1)可得到最终的复原场景:


                                         

                                eq.png

相关文章
|
机器学习/深度学习 算法 光互联
致敬何凯明的暗通道去雾算法 | NAS-Net: 基于非对齐监督的图像去雾框架
致敬何凯明的暗通道去雾算法 | NAS-Net: 基于非对齐监督的图像去雾框架
559 0
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
8天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
84 14
|
10天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
111 15
|
12天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
7天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章