输出结果
实现代码
%单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题,matlab代码注解详细,能很好地帮助理解算法过程。
clc;
clear all;
img_name='jiedao.jpg';
% 原始图像
I=double(imread(img_name))/255;
% 获取图像大小
[h,w,c]=size(I);
win_size = 7;
img_size=w*h;
figure, imshow(I);
win_dark=ones(h,w);
%计算分块darkchannel
for j=1+win_size:w-win_size
for i=win_size+1:h-win_size
m_pos_min = min(I(i,j,:));
for n=j-win_size:j+win_size
for m=i-win_size:i+win_size
if(win_dark(m,n)>m_pos_min)
win_dark(m,n)=m_pos_min;
end
end
end
end
end
%选定精确dark value坐标
% win_b = zeros(img_size,1);
figure, imshow(win_dark);
win_t=1-0.95*win_dark;
win_b=zeros(img_size,1);
for ci=1:h
for cj=1:w
if(rem(ci-8,15)<1)
if(rem(cj-8,15)<1)
win_b(ci*w+cj)=win_t(ci*w+cj);
end
end
end
end
%显示分块darkchannel
%figure, imshow(win_dark);
neb_size = 9;
win_size = 1;
epsilon = 0.000001;
%指定矩阵形状
indsM=reshape(1:img_size,h,w);
%创建稀疏矩阵
D=spdiags(win_b(:),0,img_size,img_size);
lambda=1;
x=(A+lambda*D)\(lambda*(win_b(:).*win_b(:)));
%去掉0-1范围以外的数
alpha=max(min(reshape(x,h,w),1),0);
figure, imshow(alpha);
% **************************************************
% 自动获取大气光步骤,A为最终大气光的值
% **************************************************
range=ceil(img_size*0.1);%取暗原色中最亮的%1的点数
radi_pro=zeros(range,1); %用于记录最亮点内对应图片点象素的三个通道的颜色强度
for s=1:range
[a,b]=max(win_dark);
[c,d]=max(a);
b=b(d);
m=sparse(b,d,1,h,w); %b,d为最亮值的坐标
win_dark=win_dark-c.*m; %消去选出的最大值
radi_pro(s)=sum(I(b,d,:)); %最大值对应象素三通道求和
end
A=max(radi_pro)/3;%大气光的值
% **************************************************
% 算法改进步骤,可修正天空透射率以减小明亮部分的失真率
% **************************************************
inten=zeros(h,w);
for m=1:h
for n=1:w
inten(m,n)=mean(I(m,n,:));
end
end
k=70;
k=zeros(h,w)+k/255; %容差
% A=220/255;
cha=abs(inten-A); %差限
alpha=min(max(k./cha,1).*max(alpha,0.1),1); %算法改进关键部分
figure,imshow(alpha);
% ***************************************************
alpha=repmat(alpha,[1,1,3]);
dehaze=(I-A)./alpha+A;
figure, imshow(dehaze);