Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题

简介: Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
+关注继续查看

输出结果

image.png




实现代码


%单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题,matlab代码注解详细,能很好地帮助理解算法过程。

clc;

clear all;

img_name='jiedao.jpg';

% 原始图像

I=double(imread(img_name))/255;

% 获取图像大小

[h,w,c]=size(I);

win_size = 7;

img_size=w*h;

figure, imshow(I);

win_dark=ones(h,w);

%计算分块darkchannel

for j=1+win_size:w-win_size

   for i=win_size+1:h-win_size

       m_pos_min = min(I(i,j,:));

       for n=j-win_size:j+win_size

           for m=i-win_size:i+win_size

               if(win_dark(m,n)>m_pos_min)

                   win_dark(m,n)=m_pos_min;

               end

           end

       end

   end

end

%选定精确dark value坐标

% win_b = zeros(img_size,1);

figure, imshow(win_dark);

win_t=1-0.95*win_dark;

win_b=zeros(img_size,1);

for ci=1:h

   for cj=1:w

       if(rem(ci-8,15)<1)

           if(rem(cj-8,15)<1)

               win_b(ci*w+cj)=win_t(ci*w+cj);

           end

       end

   end

end

%显示分块darkchannel

%figure, imshow(win_dark);

neb_size = 9;

win_size = 1;

epsilon = 0.000001;

%指定矩阵形状

indsM=reshape(1:img_size,h,w);



 %创建稀疏矩阵

 D=spdiags(win_b(:),0,img_size,img_size);

 lambda=1;

 x=(A+lambda*D)\(lambda*(win_b(:).*win_b(:)));

  %去掉0-1范围以外的数

 alpha=max(min(reshape(x,h,w),1),0);

figure, imshow(alpha);

% **************************************************

%     自动获取大气光步骤,A为最终大气光的值

% **************************************************

range=ceil(img_size*0.1);%取暗原色中最亮的%1的点数

radi_pro=zeros(range,1); %用于记录最亮点内对应图片点象素的三个通道的颜色强度

     for s=1:range

         [a,b]=max(win_dark);  

         [c,d]=max(a);

         b=b(d);

         m=sparse(b,d,1,h,w);        %b,d为最亮值的坐标

         win_dark=win_dark-c.*m;     %消去选出的最大值

         radi_pro(s)=sum(I(b,d,:));  %最大值对应象素三通道求和

     end

A=max(radi_pro)/3;%大气光的值

% **************************************************

%  算法改进步骤,可修正天空透射率以减小明亮部分的失真率

% **************************************************

inten=zeros(h,w);

   for m=1:h

       for n=1:w

           inten(m,n)=mean(I(m,n,:));

       end

   end

k=70;    

k=zeros(h,w)+k/255; %容差

% A=220/255;

cha=abs(inten-A);   %差限

alpha=min(max(k./cha,1).*max(alpha,0.1),1); %算法改进关键部分

figure,imshow(alpha);

% ***************************************************

alpha=repmat(alpha,[1,1,3]);  

dehaze=(I-A)./alpha+A;  

figure, imshow(dehaze);

 


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
算法笔试模拟题精解之“恐怖的辐射”
因为N M 和最大辐射值都不大,所以可以直接模拟辐射扩散的实际情况,最后判断是否有小于等于7的位置。
326 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
4594 0
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
17 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
5806 0
ML之RS之MF:基于简单的张量分解MF算法进行打分和推荐
ML之RS之MF:基于简单的张量分解MF算法进行打分和推荐
13 0
坐在马桶上看算法:快速排序【转】
本文来源:http://developer.51cto.com/art/201403/430986.htm 高快省的排序算法 有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端呢。
909 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载