Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题

简介: Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题

输出结果

image.png




实现代码


%单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题,matlab代码注解详细,能很好地帮助理解算法过程。

clc;

clear all;

img_name='jiedao.jpg';

% 原始图像

I=double(imread(img_name))/255;

% 获取图像大小

[h,w,c]=size(I);

win_size = 7;

img_size=w*h;

figure, imshow(I);

win_dark=ones(h,w);

%计算分块darkchannel

for j=1+win_size:w-win_size

   for i=win_size+1:h-win_size

       m_pos_min = min(I(i,j,:));

       for n=j-win_size:j+win_size

           for m=i-win_size:i+win_size

               if(win_dark(m,n)>m_pos_min)

                   win_dark(m,n)=m_pos_min;

               end

           end

       end

   end

end

%选定精确dark value坐标

% win_b = zeros(img_size,1);

figure, imshow(win_dark);

win_t=1-0.95*win_dark;

win_b=zeros(img_size,1);

for ci=1:h

   for cj=1:w

       if(rem(ci-8,15)<1)

           if(rem(cj-8,15)<1)

               win_b(ci*w+cj)=win_t(ci*w+cj);

           end

       end

   end

end

%显示分块darkchannel

%figure, imshow(win_dark);

neb_size = 9;

win_size = 1;

epsilon = 0.000001;

%指定矩阵形状

indsM=reshape(1:img_size,h,w);



 %创建稀疏矩阵

 D=spdiags(win_b(:),0,img_size,img_size);

 lambda=1;

 x=(A+lambda*D)\(lambda*(win_b(:).*win_b(:)));

  %去掉0-1范围以外的数

 alpha=max(min(reshape(x,h,w),1),0);

figure, imshow(alpha);

% **************************************************

%     自动获取大气光步骤,A为最终大气光的值

% **************************************************

range=ceil(img_size*0.1);%取暗原色中最亮的%1的点数

radi_pro=zeros(range,1); %用于记录最亮点内对应图片点象素的三个通道的颜色强度

     for s=1:range

         [a,b]=max(win_dark);  

         [c,d]=max(a);

         b=b(d);

         m=sparse(b,d,1,h,w);        %b,d为最亮值的坐标

         win_dark=win_dark-c.*m;     %消去选出的最大值

         radi_pro(s)=sum(I(b,d,:));  %最大值对应象素三通道求和

     end

A=max(radi_pro)/3;%大气光的值

% **************************************************

%  算法改进步骤,可修正天空透射率以减小明亮部分的失真率

% **************************************************

inten=zeros(h,w);

   for m=1:h

       for n=1:w

           inten(m,n)=mean(I(m,n,:));

       end

   end

k=70;    

k=zeros(h,w)+k/255; %容差

% A=220/255;

cha=abs(inten-A);   %差限

alpha=min(max(k./cha,1).*max(alpha,0.1),1); %算法改进关键部分

figure,imshow(alpha);

% ***************************************************

alpha=repmat(alpha,[1,1,3]);  

dehaze=(I-A)./alpha+A;  

figure, imshow(dehaze);

 


相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
187 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
141 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
193 3
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
195 2
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
122 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
111 0

热门文章

最新文章

下一篇
oss云网关配置