搜索引擎 _ Elasticsearch(一)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 搜索引擎 _ Elasticsearch

了解Elasticsearch

我们搜做 : 冷环渊,可以看到有关冷环渊的一些信息,

那么这个是怎么做到的呢?,往常我们都是用

SQL : like %冷环渊% 但是数据量一旦变大了,就会变慢,这个时候用索引, 也是只能快一些

这个时候 Elasticsearch就是帮助我们解决问题的关键人物

他专注于搜索 : 百度,github,淘宝等搜索都能看到他的影子

我们下面会通过以下去完成对es的学习

  1. 认识一个人
  2. 看看同种类的搜索引擎的区别
  3. 安装
  4. 生态圈
  5. IK 分词器
  6. RestFul 操作
  7. RestFul CRUD
  8. SpingBoot 继承 ES(从原理开始分析)
  9. 实战 : 爬虫爬取数据!
  10. 模拟全文检索

以后只要,需要用到搜索,就可以使用ES , 建议基于大数据的情况下

聊聊这个人 Doug Cutting

1998年9月4日,Google公司在美国硅谷成立。正如大家所知,它是一家做搜索引擎起家的公司。

学大数据 首先就是 hadoop

无独有偶,一位名叫Doug Cutting的美国工程师,也迷上了搜索引擎。他做了一个用于文本搜索的函数库(姑且理解为软件的功能组件),命名为Lucene

左为Doug Cutting,右为Lucene的LOGO

Lucene是用JAVA写成的,目标是为各种中小型应用软件加入全文检索功能。因为好用而且开源(代码公开),非常受程序员们的欢迎。

早期的时候,这个项目被发布在Doug Cutting的个人网站和SourceForge(一个开源软件网站)。后来,2001年底,Lucene成为Apache软件基金会jakarta项目的一个子项目。

Apache软件基金会,搞IT的应该都认识

2004年,Doug Cutting再接再励,在Lucene的基础上,和Apache开源伙伴Mike Cafarella合作,开发了一款可以代替当时的主流搜索的开源搜索引擎,命名为Nutch

Nutch是一个建立在Lucene核心之上的网页搜索应用程序,可以下载下来直接使用。它在Lucene的基础上加了网络爬虫和一些网页相关的功能,目的就是从一个简单的站内检索推广到全球网络的搜索上,就像Google一样。

Nutch在业界的影响力比Lucene更大。

大批网站采用了Nutch平台,大大降低了技术门槛,使低成本的普通计算机取代高价的Web服务器成为可能。甚至有一段时间,在硅谷有了一股用Nutch低成本创业的潮流。

随着时间的推移,无论是Google还是Nutch,都面临搜索对象“体积”不断增大的问题。

尤其是Google,作为互联网搜索引擎,需要存储大量的网页,并不断优化自己的搜索算法,提升搜索效率。

Google搜索栏

在这个过程中,Google确实找到了不少好办法,并且无私地分享了出来。

2003年,Google发表了一篇技术学术论文,公开介绍了自己的谷歌文件系统GFS(Google File System)。这是Google公司为了存储海量搜索数据而设计的专用文件系统。

第二年,也就是2004年,Doug Cutting基于Google的GFS论文,实现了分布式文件存储系统,并将它命名为NDFS(Nutch Distributed File System)

还是2004年,Google又发表了一篇技术学术论文,介绍自己的MapReduce编程模型。这个编程模型,用于大规模数据集(大于1TB)的并行分析运算。

第二年(2005年),Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。

2006年,当时依然很厉害的Yahoo(雅虎)公司,招安了Doug Cutting。

这里要补充说明一下雅虎招安Doug的背景:2004年之前,作为互联网开拓者的雅虎,是使用Google搜索引擎作为自家搜索服务的。在2004年开始,雅虎放弃了Google,开始自己研发搜索引擎。所以。。。

加盟Yahoo之后,Doug Cutting将NDFS和MapReduce进行了升级改造,并重新命名为Hadoop(NDFS也改名为HDFS,Hadoop Distributed File System)。

这个,就是后来大名鼎鼎的大数据框架系统——Hadoop的由来。而Doug Cutting,则被人们称为Hadoop之父

Hadoop这个名字,实际上是Doug Cutting他儿子的黄色玩具大象的名字。所以,Hadoop的Logo,就是一只奔跑的黄色大象。

我们继续往下说。

还是2006年,Google又发论文了。

这次,它们介绍了自己的BigTable。这是一种分布式数据存储系统,一种用来处理海量数据的非关系型数据库。

Doug Cutting当然没有放过,在自己的hadoop系统里面,引入了BigTable,并命名为HBase

好吧,反正就是紧跟Google时代步伐,你出什么,我学什么。

所以,Hadoop的核心部分,基本上都有Google的影子。

2008年1月,Hadoop成功上位,正式成为Apache基金会的顶级项目。

同年2月,Yahoo宣布建成了一个拥有1万个内核的Hadoop集群,并将自己的搜索引擎产品部署在上面。

7月,Hadoop打破世界纪录,成为最快排序1TB数据的系统,用时209秒。

此后,Hadoop便进入了高速发展期,直至现在。

回到主题

Lucene 是一套信息检索工具包,jar包 不好含搜索引擎系统‘

包含 : 索引结构,读写索引工具 排序,搜索规则 。。。 工具类

Lucene 和 ES 的关系:

ES 是居于 Lucene 做了封装和增强 (我们上手就会感到十分的简单)

ElasticSearch概述

Elaticsearch,简称为es, es是一个开源的高扩展分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别(大数据时代)的数据。es也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

据国际权威的数据库产品评测机构DB Engines的统计,在2016年1月,ElasticSearch已超过Solr等,成为排名第一的搜索引擎类应用。

关键字就是:

  • 实时
  • 分布式
  • 大数据
  • 速度快

ES和solr的差别

架构选择!!!

Elasticsearch简介

Elasticsearch是一个实时分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。

它用于全文搜索、结构化搜索、分析以及将这三者混合使用:

维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入实时搜索(search-asyou-type)和搜索纠错(did-you-mean)等搜索建议功能。

英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编辑以实时的反馈,以便及时了解公众对新发表的文章的回应。

StackOverflow结合全文搜索与地理位置查询,以及more-like-this功能来找到相关的问题和答案。

Github使用Elasticsearch检索1300亿行的代码。

但是Elasticsearch不仅用于大型企业,它还让像DataDog以及Klout这样的创业公司将最初的想法变成可扩展的解决方案。

Elasticsearch可以在你的笔记本上运行,也可以在数以百计的服务器上处理PB级别的数据 。

Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。

但是,Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

Solr简介

Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化

Solr可以独立运行,运行在Jetty、Tomcat等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST方法向 Solr 服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据xml文档添加、删除、更新索引。Solr 搜索只需要发送 HTTP GET 请求,然后对 Solr 返回Xml、json等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

solr是基于lucene开发企业级搜索服务器,实际上就是封装了lucene。

Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。

Lucene简介

Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。人们经常提到信息检索程序库,虽然与搜索引擎有关,但不应该将信息检索程序库与搜索引擎相混淆。

Lucene是一个全文检索引擎的架构。那什么是全文搜索引擎?

全文搜索引擎是名副其实的搜索引擎,国外具代表性的有Google、Fast/AllTheWeb、AltaVista、Inktomi、Teoma、WiseNut等,国内著名的有百度(Baidu)。它们都是通过从互联网上提取的各个网站的信息(以网页文字为主)而建立的数据库中,检索与用户查询条件匹配的相关记录,然后按一定的排列顺序将结果返回给用户,因此他们是真正的搜索引擎。

从搜索结果来源的角度,全文搜索引擎又可细分为两种,一种是拥有自己的检索程序(Indexer),俗称“蜘蛛”(Spider)程序或“机器人”(Robot)程序,并自建网页数据库,搜索结果直接从自身的数据库中调用,如上面提到的7家引擎;另一种则是租用其他引擎的数据库,并按自定的格式排列搜索结果,如Lycos引擎。

2.4 Elasticsearch和Solr比较

2.5 ElasticSearch vs Solr 总结

  1. es基本是开箱即用(解压就可以用 ! ),非常简单。Solr安装略微复杂一丢丢!
  2. Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能。
  3. Solr 支持更多格式的数据,比如JSON、XML、CSV,而 Elasticsearch 仅支持json文件格式。
  4. Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供,例如图形化界面需要kibana友好支撑~!
  5. Solr 查询快,但更新索引时慢(即插入删除慢),用于电商等查询多的应用;
  • ES建立索引快(即查询慢),即实时性查询快,用于facebook新浪等搜索。
  • Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。
  1. Solr比较成熟,有一个更大,更成熟的用户、开发和贡献者社区,而 Elasticsearch相对开发维护者较少,更新太快,学习使用成本较高。(趋势!)

ElasticSearch  安装

就注意一点,JDK必须不能低于 1.8 最低要求就是1.8

因为是java开发的,所以ES的版本和我们之后对应的java的和jar包的版本必须对应,且要保证JDK环境是正常的

下载

官网地址 :https://www.elastic.co/cn/elasticsearch/

之后解压

查看目录

熟悉目录

bin 启动文件
config 配置文件
  log4j2 日志文件
  jvm.options jvm的运行参数,内存不足的一定要调整,默认是1g
  elasticsearch ES的一些配置 默认 : 9200
lib      相关架构
logs     日志!
modules  功能模块
pluginx  插件

启动查看

访问查看

安装可视化界面 ES head 插件

下载地址 : https://github.com/mobz/elasticsearch-head

之后 配置环境和启动测试

npm install 
npm run start

之后启动查看 9100端口

但是发现,迟迟连接不上,这个是为什么? 跨域问题,端口和端口的访问,于是我们要去配置ES的快去权限开启

http.cors.enabled: ture
http.cors.allow-origin: "*"

之后重启es,连接成功

我们可以创建索引体验一下,我们可以把索引,我们可以暂时当作是一个数据库(索引(库),表(库中的数据)),7.x之后就淘汰了表,这个我们之后的学习就可以了解到哈哈

创建索引查看

这个head就当作我们展示数据的工具

这里面的json是没有格式化的,我们后续用kabanna做

了解 ELK

ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称。市面上也被成为ElasticStack。其中Elasticsearch是一个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。像类似百度、谷歌这种大数据全文搜索引擎的场景都可以使用Elasticsearch作为底层支持框架,可见Elasticsearch提供的搜索能力确实强大,市面上很多时候我们简称Elasticsearch为es。Logstash是ELK的中央数据流引擎,用于从不同目标(文件/数据存储/MQ)收集的不同格式数据,经过过滤后支持输出到不同目的地(文件/MQ/redis/elasticsearch/kafka等)。Kibana可以将elasticsearch的数据通过友好
的页面展示出来,提供实时分析的功能。

市面上很多开发只要提到ELK能够一致说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景,日志分析和收集只是更具有代表性。并非唯一性。

安装Kibana

Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存储在Elasticsearch索引中的数据。使用Kibana,可以通过各种图表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板(dashboard)实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动Elasticsearch索引监测

日志数据清洗 ---> 搜索,存储 ---> 展示

官网:https://www.elastic.co/cn/kibana

安装注意 : klbanna 要和 ES 的版本要一致

下载完毕后,解压需要一些时间,是一个标准的工程

好处 ELK基本上都是拆箱就可以用了

启动测试

查看解压目录

启动

访问 5601看看i情况

开发工具 Post curl head 谷歌插件

之后我们的命令就在这个klbanna里面

这个时候,全英文就让我们很难受,klbanna也提供了国际化,这个项目十分的优秀

配置汉化

之后重启klbanna就可以了

ES核心概念

  1. 索引
  2. 字段类型(mapping)
  3. 文档(documents)

概述

在前面的学习中,我们已经掌握了es是什么,同时也把es的服务已经安装启动,那么es是如何去存储数据,数据结构是什么,又是如何实现搜索的呢?我们先来聊聊ElasticSearch的相关概念吧!

集群,节点,索引,类型,文档,分片,映射是什么?

一切都是json

elasticsearch是面向文档,关系行数据库 和 elasticsearch 客观的对比!一切都是JSON!

Relational DB

Elasticsearch

数据库(database)

索引(indices)

表(tables)

types

行(rows)

documents

字段(columns)

fields

elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多 个文档(行),每个文档中又包含多个字段(列)。

物理设计:

elasticsearch 在后台把每个索引划分成多个分片,每分分片可以在集群中的不同服务器间迁移

一个人就是一个集群!默认的集群名称就是 elaticsearh

逻辑设计:

一个索引类型中,包含多个文档,比如说文档1,文档2。 当我们索引一篇文档时,可以通过这样的一各顺序找到 它: 索引 ▷ 类型 ▷ 文档ID ,通过这个组合我们就能索引到某个具体的文档。 注意:ID不必是整数,实际上它是个字 符串。

文档

就是我们的一条条数据

user
1  zhangsan  18
2  kuangshen  3

之前说elasticsearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,elasticsearch中,文档有几个 重要属性 :

  • 自我包含,一篇文档同时包含字段和对应的值,也就是同时包含 key:value!
  • 可以是层次型的,一个文档中包含自文档,复杂的逻辑实体就是这么来的! {就是一个json对象!fastjson进行自动转换!}
  • 灵活的结构,文档不依赖预先定义的模式,我们知道关系型数据库中,要提前定义字段才能使用,在elasticsearch中,对于字段是非常灵活的,有时候,我们可以忽略该字段,或者动态的添加一个新的字段。

尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符 串也可以是整形。因为elasticsearch会保存字段和类型之间的映射及其他的设置。这种映射具体到每个映射的每种类型,这也是为什么在elasticsearch中,类型有时候也称为映射类型。

类型

类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。 类型中对于字段的定义称为映射,比如 name 映 射为字符串类型。 我们说文档是无模式的,它们不需要拥有映射中所定义的所有字段,比如新增一个字段,那么elasticsearch是怎么做的呢?elasticsearch会自动的将新字段加入映射,但是这个字段的不确定它是什么类型,elasticsearch就开始猜,如果这个值是18,那么elasticsearch会认为它是整形。 但是elasticsearch也可能猜不对, 所以最安全的方式就是提前定义好所需要的映射,这点跟关系型数据库殊途同归了,先定义好字段,然后再使用,别 整什么幺蛾子。

索引

就是数据库!

索引是映射类型的容器,elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。 然后它们被存储到了各个分片上了。 我们来研究下分片是如何工作的。

物理设计 :节点和分片 如何工作

一个集群至少有一个节点,而一个节点就是一个elasricsearch进程,节点可以有多个索引默认的,如果你创建索引,那么索引将会有个5个分片 ( primary shard ,又称主分片 ) 构成的,每一个主分片会有一个副本 ( replica shard ,又称复制分片 )

上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同一个节点内,这样有利于某个节点挂掉 了,数据也不至于丢失。 实际上,一个分片是一个Lucene索引,一个包含倒排索引的文件目录,倒排索引的结构使 得elasticsearch在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。 不过,等等,倒排索引是什 么鬼?

倒排索引

elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索, 一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。 例如,现在有两个文档, 每个文档包含如下内容:

Study every day, good good up to forever  # 文档1包含的内容
To forever, study every day, good good up # 文档2包含的内容

为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重 复的词条的排序列表,然后列出每个词条出现在哪个文档 :

term

doc_1

doc_2

Study

x

To

x

x

every

forever

day

study

x

good

every

to

x

up

现在,我们试图搜索 to forever,只需要查看包含每个词条的文档 score

term

doc_1

doc_2

to

×

forever

total

2

1

两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。

再来看一个示例,比如我们通过博客标签来搜索博客文章。那么倒排索引列表就是这样的一个结构 :

如果要搜索含有 python 标签的文章,那相对于查找所有原始数据而言,查找倒排索引后的数据将会快的多。只需要 查看标签这一栏,然后获取相关的文章ID即可。完全过滤掉无关的所有数据,提高效率!

elasticsearch的索引和Lucene的索引对比

在elasticsearch中, 索引 (库)这个词被频繁使用,这就是术语的使用。 在elasticsearch中,索引被分为多个分片,每份 分片是一个Lucene的索引。所以一个elasticsearch索引是由多个Lucene索引组成的。别问为什么,谁让elasticsearch使用Lucene作为底层呢! 如无特指,说起索引都是指elasticsearch的索引。

IK分词器插件

什么是IK分词器?

分词:即把一段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词,比如 “我爱狂神” 会被分为"我","爱","狂","神",这显然是不符合要求的,所以我们需要安装中文分词器ik来解决这个问题。

如果要使用中文,建议使用ik分词器!

IK提供了两个分词算法:ik_smart 和 ik_max_word,其中 ik_smart 为最少切分,ik_max_word为最细粒度划分!

安装

  1. https://github.com/medcl/elasticsearch-analysis-ik
  2. 下载完毕之后,放入到我们的elasticsearch 插件即可!
  3. 重启观察ES,可以看到ik分词器被加载了!
  4. elasticsearch-plugin 可以通过这个命令来查看加载进来的插件
  5. 使用kibana测试!

查看不同的分词效果

其中 ik_smart 为最少切分

ik_max_word为最细粒度划分!穷尽词库的可能!字典!

我们输入 超级喜欢狂神说Java

发现问题:狂神说被拆开了!

这种自己需要的词,需要自己加到我们的分词器的字典中!

ik 分词器增加自己的配置!

重启es,看细节!

再次测试一下狂神说,看下效果!

Rest风格说明

一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件。它主要用于客户端和服务器交互类的软件。基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。

基本Rest命令说明:

method

url地址

描述

PUT

localhost:9200/索引名称/类型名称/文档id

创建文档(指定文档id)

POST

localhost:9200/索引名称/类型名称

创建文档(随机文档id)

POST

localhost:9200/索引名称/类型名称/文档id/_update

修改文档

DELETE

localhost:9200/索引名称/类型名称/文档id

删除文档

GET

localhost:9200/索引名称/类型名称/文档id

查询文档通过文档id

POST

localhost:9200/索引名称/类型名称/_search

查询所有数据

关于索引的基本操作

创建一个索引!

PUT /索引名/~类型名~/文档id
{请求体}

完成了自动增加了索引!数据也成功的添加了,这就是我说大家在初期可以把它当做数据库学习的原因!

那么 name 这个字段用不用指定类型呢。毕竟我们关系型数据库 是需要指定类型的啊 !

  • 字符串类型
    text 、 keyword
  • 数值类型
    long, integer, short, byte, double, float, half_float, scaled_float
  • 日期类型
    date
  • 布尔值类型
    boolean
  • 二进制类型
    binary
  • 等等.....


搜索引擎 _ Elasticsearch(二)https://developer.aliyun.com/article/1469574

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
19天前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
14 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
2月前
|
自然语言处理 搜索推荐 数据库
高性能分布式搜索引擎Elasticsearch详解
高性能分布式搜索引擎Elasticsearch详解
73 4
高性能分布式搜索引擎Elasticsearch详解
|
19天前
|
开发框架 监控 搜索推荐
GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎
本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。
|
27天前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
41 0
|
27天前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
26 0
|
6月前
|
存储 自然语言处理 搜索推荐
分布式搜索引擎ElasticSearch
Elasticsearch是一款强大的开源搜索引擎,用于快速搜索和数据分析。它在GitHub、电商搜索、百度搜索等场景中广泛应用。Elasticsearch是ELK(Elasticsearch、Logstash、Kibana)技术栈的核心,用于存储、搜索和分析数据。它基于Apache Lucene构建,提供分布式搜索能力。相比其他搜索引擎,如Solr,Elasticsearch更受欢迎。倒排索引是其高效搜索的关键,通过将词条与文档ID关联,实现快速模糊搜索,避免全表扫描。
236 13
|
5月前
|
存储 搜索推荐 关系型数据库
【搜索引擎】elastic search核心概念
【搜索引擎】elastic search核心概念
47 0
|
6月前
|
监控 搜索推荐 安全
面经:Elasticsearch全文搜索引擎原理与实战
【4月更文挑战第10天】本文是关于Elasticsearch面试准备的博客,重点讨论了四个核心主题:Elasticsearch的分布式架构和数据模型、CRUD操作与查询DSL、集群管理与性能优化,以及安全与插件扩展。文中通过代码示例介绍了如何进行文档操作、查询以及集群管理,并强调理解Elasticsearch的底层原理和优化策略对面试和实际工作的重要性。
65 6
|
6月前
|
监控 数据可视化 搜索推荐
初识Elasticsearch:打造高效全文搜索与数据分析引擎
【4月更文挑战第7天】Elasticsearch,一款由Elastic公司开发的分布式搜索引擎,以其全文搜索和数据分析能力在全球范围内广泛应用。它基于Apache Lucene,支持JSON,适用于日志分析、监控等领域。Elasticsearch的亮点包括:精准快速的全文搜索,通过倒排索引和分析器实现;强大的数据分析与实时响应能力,提供丰富聚合功能;弹性扩展和高可用性,适应水平扩展和故障恢复;以及完善的生态系统,与Kibana、Logstash等工具集成,支持多种编程语言。作为大数据处理的重要工具,Elasticsearch在企业级搜索和数据分析中扮演关键角色。
184 1
|
6月前
|
存储 搜索推荐 Java
Java远程连接本地开源分布式搜索引擎ElasticSearch
Java远程连接本地开源分布式搜索引擎ElasticSearch

热门文章

最新文章