DDColor:AI图像着色工具,优秀的黑白图像上色模型,支持双解码器!

简介: DDColor:AI图像着色工具,优秀的黑白图像上色模型,支持双解码器!

前言


在数字图像处理领域,图像上色 一直是一个重要的课题。传统的图像上色方法通常需要人工干预,耗时且效果有限。


然而,随着深度学习技术的发展,自动图像上色模型逐渐成为了研究热点。 其中,DDColor 图像上色模型以其出色的性能和便捷的使用方式备受关注。


项目介绍


DDColor 是一个由 阿里达摩院 研究的基于深度学习技术的 图像上色模型,它能够自动将黑白或灰度图像着色,使图像更加生动逼真。


该模型采用了先进的神经网络架构和训练技术,能够识别图像中的物体和场景,并为其添加逼真的颜色。


项目及演示:https://modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary


论文:https://arxiv.org/abs/2212.11613


GitHub:https://github.com/piddnad/DDColor


Colab在线体验:https://github.com/camenduru/DDColor-colab


双解码器技术


DDColor 模型 包括一个图像编码器和两个解码器,分别是图像解码器和颜色解码器。图像解码器完成视觉特征的上采样过程,而颜色解码器基于一个 Transformer 进行颜色查询的解码。


具体而言,颜色解码器使用多尺度的视觉特征帮助颜色嵌入的学习,因此学习到强语义相关的颜色嵌入。

使用双解码器技术,DDColor能够同时考虑色彩分布和像素级详细信息,能实现高度真实的图像上色效果。


不仅能给历史黑白照片上色,还能对动漫或游戏中的风景进行真实风格的上色。


DDColor使用双解码器做了哪些事情?


DDColor 使用了双解码器来处理图片:一个是恢复图片的结构,另一个是决定图片每个部分的颜色。


这项技术的创新之处在于它不需要像以前的方法那样依赖于人工设置的规则,而是能够自己学习图片的内容并决定合适的颜色。


通过这种方式,DDColor可以更准确地给复杂场景的图片上色,减少颜色错误涂抹的问题,并且使得最终的图片看起来色彩更丰富、更自然。


DDColor工作原理


特征提取多尺度处理 、双解码器结构、颜色应用、色彩丰富度优化


使用及体验


1、运行依赖安装


方式一:如果有本地或云服务器计算资源,可以在本地或云服务器进行环境安装,以更灵活的方式体验算法模型。

方式二:如果觉得本地安装较为复杂,也可以在线运行 ModelScope 平台(阿里云官方模型平台) 提供的 Notebook。


Notebook 中预先安装了官方镜像,因此无需再进行手动环境安装,更加方便快捷。


2、图像准备


准备一张黑白图像或者彩色图像(输入一张彩色图像,也可以进行重上色),图像可以在本地或网络上。

例如,我们选取一张黑白照片:


3、调用 pipeline 进行图像上色

import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
 
img_colorization = pipeline(Tasks.image_colorization, 
                       model='damo/cv_ddcolor_image-colorization')
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg'
result = img_colorization(img_path)
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])

这样,我们就获得了一张上色后的彩色图像(result.png),效果还不错!


更多的应用场景


DDColor图像上色模型可以在许多领域有广泛的应用前景,比如:


  • 影视后期制作:在影视后期制作中,可以利用DDColor模型对黑白老电影或影视剧进行着色处理,使其更具观赏性和商业价值。
  • 艺术创作:艺术家可以利用DDColor模型为黑白素描作品添加色彩,让作品更加生动。
  • 历史照片修复:对于黑白历史照片的修复和着色,DDColor模型也能发挥重要作用。


总结


DDColor 图像上色模型依托先进的深度学习技术,为用户提供了一种方便快捷的图像上色解决方案。

其高质量的着色效果和快速的处理速度使其在多个领域都具有广泛的应用前景,为图像处理领域带来了新的可能性。

相关文章
|
5天前
|
人工智能 自然语言处理 搜索推荐
AI与GIS工具引领企业变革
科技赋能企业转型:清华团队突破固态电池技术,AIGEO融合AI与GIS助力精准获客,降本增效。覆盖美妆、教育、金融等多领域,提升流量与转化率,推动数字化升级。(238字)
166 106
|
5天前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
107 1
|
5天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
283 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
7天前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
192 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
8天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
93 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
6天前
|
传感器 人工智能 数据可视化
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型虽强,但缺乏行动力。AI智能体通过工具调用、环境感知与自主决策,实现从“理解”到“执行”的跨越。本文解析主流智能体框架,助你根据技术能力、任务复杂度与业务目标,选择最适合的开发工具,从入门到落地高效构建智能系统。(238字)
85 7
|
5天前
|
人工智能 NoSQL 关系型数据库
Ai驱动的项目管理工具安装教程
Dectask是一款基于AI的高性能项目管理工具,融合企业级功能与轻量体验,支持多种安装方式,普通安装的教程
46 3
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
193 8