推荐一款强大的AI开源项目!有了它,将你的数据库秒变AI数据库!

简介: 推荐一款强大的AI开源项目!有了它,将你的数据库秒变AI数据库!

前言


在当今数字化的世界中,数据库系统扮演着至关重要的角色。而原生系统的功能我们也大都知晓,无非是一些增删改查、数据优化的使用。但有一些开源工具项目可以帮助我们对数据库降本增效。


在本文中,小编将介绍一个名为SuperDuperDB的开源项目,它是一个用Python编写的AI开发和部署框架,可对接数据库,让数据库具备AI特性。

image.png


项目介绍


项目地址:https://github.com/SuperDuperDB/superduperdb


将 AI 引入数据库,直接与您的数据库和数据集成。想想就应该特别有意思。它允许培训和管理任何 AI 模型和 API,为用户提供更强大的数据库功能。支持将人工智能直接整合到数据库操作中。


SuperDuperDB消除了复杂的MLOps管道和专用向量数据库的需求,使我们能够通过简单的Python接口,高效灵活地构建端到端的AI应用!


核心特性


  • 将AI与现有数据基础设施集成: 在单一可扩展的系统中将任何AI模型和API与您的数据库集成,无需额外的预处理步骤、ETL或冗余代码。
  • 流式推理: 当新数据到达时,让您的模型自动激活且立即计算输出,保持您的系统始终更新。
  • 可扩展的模型训练: 通过查询您的训练数据,在大型、多样化的数据集上训练AI模型。通过内置的计算优化确保最佳性能。
  • 模型调用链: 通过连接模型和API,轻松设置复杂的工作流程,以相互依赖和顺序的方式协同工作和调用。
  • 简单易扩展的接口: 添加并利用Python生态系统中的任何函数、程序、脚本或算法,增强您的工作流和应用。在使用SuperDuperDB时,可以仅通过简单的Python命令即可深入到任何实现层级,包括模型的内部实现。
  • 处理复杂数据类型: 在您的数据库中直接处理图像、视频、音频等数据,以及任何可以在Python中编码为bytes的类型的数据。
  • 特征存储: 将您的数据库转变为可用于存储和管理AI模型中任意数据类型的数据输入和输出的中心化存储库,使各种数据可以在熟悉的环境中易结构化的格式来使用。
  • 向量搜索: 无需将数据复制和迁移到其他专门的向量数据库 - 将您现有的测试和生产的数据库转变为全功能的多模态向量搜索数据库,包括使用强大的模型和API轻松生成数据的向量Embedding和数据的向量索引。


目前支持的数据库


模型部署


直接将任何AI模型(无论是开源、商业模型还是自行开发的)与您的数据库集成、训练和管理,仅需一个Python命令即可自动在数据库上模型进行计算输出:


安装和部署模型

m = db.add(
    <sklearn_model>|<torch_module>|<transformers_pipeline>|<arbitrary_callable>,
    preprocess=<your_preprocess_callable>,
    postprocess=<your_postprocess_callable>,
    encoder=<your_datatype>
)

模型推理

m.predict(X='<input_column>', db=db, select=<mongodb_query>, listen=False|True, create_vector_index=False|True)

模型训练

m.fit(X='<input_column_or_key>', y='<target_column_or_key>', db=db, select=<mongodb_query>|<ibis_query>)

通过一个简单的Python命令,将通过API访问的三方模型和您自己的其他模型集成在一起

m = db.add(
    OpenAI<Task>|Cohere<Task>|Anthropic<Task>|JinaAI<Task>(*args, **kwargs),   # <Task> - Embedding,ChatCompletion,...
)

安装使用


通过pip安装SuperDuperDB

pip install superduperdb

通过Docker安装SuperDuperDB

docker run -p 8888:8888 superduperdb/demo:latest

SuperDuperDB与数据库联动做哪些事情?


  • 部署 ML/AI 模型到你的数据库
  • 直接从您的数据库训练模型
  • 基于你的数据进行向量搜索
  • 将AI接口集成,与其他模型协同工作
  • Llama2 模型加到SuperDuperDB中
  • 将模型的输出结果作为下游模型的输入


总结


SuperDuperDB 是一个简单而强大的AI开发和部署框架,它为开发人员提供了一个灵活的数据使用途径。如果你对这款项目感兴趣,不妨去GitHub上查看SuperDuperDB项目的更多信息,并尝试在自己的项目中使用它。

相关文章
|
15天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
13天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
43 6
|
1月前
|
存储 人工智能 uml
介绍一款好用的开源画图神器-draw.io | AI应用开发
draw.io 是一款基于浏览器的开源绘图工具,无需安装即可使用,支持多种操作系统和设备。其简洁的界面、丰富的形状库、智能对齐功能和强大的云端协作能力,使其成为专业人士和创意爱好者的首选。无论是产品设计、流程图绘制还是思维导图构建,draw.io 都能满足你的多样化需求。【10月更文挑战第7天】
103 0
|
13天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
14天前
|
人工智能 运维 关系型数据库
云栖大会|数据库与AI全面融合,迈入数据智能新纪元
2024年云栖大会「数据库与AI融合」专场,来自NVIDIA、宇视科技、合思信息、杭州光云科技、MiniMax等企业的代表与阿里云瑶池数据库团队,共同分享了Data+AI全面融合的最新技术进展。阿里云发布了DMS的跨云统一开放元数据OneMeta和智能开发OneOps,推出《云数据库运维》技术图书,并介绍了PolarDB、AnalyticDB、Lindorm和Tair等产品的最新能力,展示了AI在数据库领域的广泛应用和创新。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
14天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
13天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
31 1
|
18天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
53 6
|
20天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
80 4

热门文章

最新文章