数据结构与算法(Java篇)笔记--快速排序

简介: 数据结构与算法(Java篇)笔记--快速排序



前言

在我们的程序中,排序是非常常见的一种需求,提供一些数据元素,把这些数据元素按照一定的规则进行排序。比如查询一些订单,按照订单的日期进行排序;再比如查询一些商品,按照商品的价格进行排序等等。所以,接下来我们要学习一些常见的排序算法。


一、选择排序

  快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一 部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序 过程可以递归进行,以此达到整个数据变成有序序列。

需求:

排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}

排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}

二、排序原理

  Step1.首先设定一个分界值,通过该分界值将数组分成左右两部分;

  Step2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分 中各元素都小于 或等于分界值,而右边部分中各元素都大于或等于分界值;

  Step3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两 部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

  Step4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当 左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

切分原理

把一个数组切分成两个子数组的基本思想:

  Step1.找一个基准值,用两个指针分别指向数组的头部和尾部;

  Step2.先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置;

  Step3.再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置;

  Step4.交换当前左边指针位置和右边指针位置的元素;

  Step5.重复2,3,4步骤,直到左边指针的值大于右边指针的值停止。

API设计

类名 Quick
构造方法 Quick():创建Quick对象
成员方法 1.public static void sort(Comparable[] a):对数组内的元素进行排序
2.private static void sort(Comparable[] a, int lo, int hi):对数组a中从索引lo到索引hi之间的元素 进行排序
3.public static int partition(Comparable[] a,int lo,int hi):对数组a中,从索引 lo到索引 hi之间的元 素进行分组,并返回分组界限对应的索引
4.private static boolean less(Comparable v,Comparable w):判断v是否小于w
5.private static void exch(Comparable[] a,int i,int j):交换a数组中,索引i和索引j处的值

1.代码实现

//排序代码
public class Quick {
    /*
        对数组a中的元素进行排序
    */
    public static void sort(Integer[] a){
        int lo = 0;
        int hi = a.length - 1;
        sort(a, lo, hi);
    }
    /*
        对数组a中从lo到hi的元素进行排序
    */
    public static void sort(Integer[] a, int lo, int hi){
        // 做安全性校验
        if(hi <= lo){
            return;
        }
        //对a数组中,从lo到hi的元素进行切分
        int partition = partition(a, lo, hi);
        //对左边分组中的元素进行排序
        sort(a,lo,partition-1);
        //对右边分组中的元素进行排序
        sort(a,partition+1, hi);
    }
    //对数组a中,从索引lo到索引hi之间的元素进行分组,并返回分组界限对应的索引
    public static int partition(Integer[] a, int lo, int hi){
        Integer key = a[lo];//把最左边的元素当做基准值
        int left = lo;//定义一个左侧指针,初始指向最左边的元素
        int right = hi + 1;//定义一个右侧指针,初始指向最右侧的元素下一个位置
        //进行切分
        while(true){
            //先从右往左扫描,找到一个比基准值小的元素
            while(less(key, a[--right])){//循环停止,证明找到了一个比基准值小的元素
                if(right == lo){
                    break;//已经扫描到最左边了,无需继续扫描
                }
            }
            //再从左往右扫描,找一个比基准值大的元素
            while(less(a[++left], key)){//循环停止,证明找到了一个比基准值大的元素
                if(left == hi){
                    break;//已经扫描到了最右边了,无需继续扫描
                }
            }
            if(left >= right){
                //扫描完了所有元素,结束循环
                break;
            }else{
                //交换left和right索引处的元素
                exch(a,left,right);//right就是切分的界
            }
        }
        //交换最后rigth索引处和基准值所在的索引处的值
        exch(a, lo, right);
        return right; //right就是切分的界限
    }
    /*
    数组元素i和j交换位置
    */
    private static void exch(Integer[] a, int i, int j){
        Integer t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
    /*
    比较v元素是否小于w元素
    */
    private static boolean less(Integer v, Integer w){
        return v.compareTo(w) < 0;
    }
}

测试类

//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
        Quick.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

2.运行结果

编写完成之后,点击运行就能知道选择排序的结果,如下图所示:


总结

快速排序和归并排序的区别

  快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序 是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的 方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在 处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。

时间复杂度

  如果我们把数组的切分看做是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快 速排序的时间复杂度为O(nlogn);

  最坏情况:每一次切分选择的基准数字是当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总 共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2);

  平均情况:每一次切分选择的基准数字不是最大值和最小值,也不是中值,这种情况我们也可以用数学归纳法证 明,快速排序的时间复杂度为O(nlogn),由于数学归纳法有很多数学相关的知识,容易使我们混乱,所以这里就不对 平均情况的时间复杂度做证明了。

感谢观看,如果有帮助到你,请给题解点个赞和收藏,让更多的人看到。🌹🌹🌹

也欢迎你,关注我。👍👍👍

你们的点赞和留言对我真的很重要!!! ✿✿✿

相关文章
|
13天前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
2月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
70 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
112 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
139 61
|
12天前
|
搜索推荐 C++
【C++数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
快速排序是一种高效的排序算法,基于分治策略。它的主要思想是通过选择一个基准元素(pivot),将数组划分成两部分。一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。然后对这两部分分别进行排序,最终使整个数组有序。(第一行是元素个数,第二行是待排序的原始关键字数据。本关任务:实现快速排序算法。开始你的任务吧,祝你成功!
31 7
|
3月前
|
存储 Java
数据结构第二篇【关于java线性表(顺序表)的基本操作】
数据结构第二篇【关于java线性表(顺序表)的基本操作】
55 6
|
3月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
67 1
|
3月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
123 2
|
3月前
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
|
3月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序

热门文章

最新文章