【状态估计】基于卡尔曼滤波器的传感器直流电机驱动研究(Matlab代码、Simulink

简介: 【状态估计】基于卡尔曼滤波器的传感器直流电机驱动研究(Matlab代码、Simulink

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码、Simulink实现


💥1 概述

卡尔曼滤波算法最先由美国学者 R.E.Kalman 提出,它最早是用来解决离散线性系统滤波的问题[60],该算法一经提出就得到广泛关注。卡尔曼滤波器属于随机观测器,采用状态空间法在时域内设计滤波器,使用线性最小方差估计,有良好的滤波性能。卡尔曼滤波器是一组数学方程,用一种有效的递归方法来估计系统的状态,在考虑系统的输入、输出随机干扰的情况下,得到满足最小均方根误差的最优估计,可以有效的削弱随机干扰和测量噪声的影响。因为它采用递推的方法,为方便数字化实现,还可以将算法进行离散化。随着计算机控制技术的发展,其计算复杂性已经不再是障碍,所以卡尔曼滤波器逐渐得到了大家的重视,如今已广泛应用于各个领域,如导航制导、工业控制、目标跟踪、大地测量和金融等。卡尔曼滤波器系统结构如图 3-1 所示,下面介绍离散系统卡尔曼滤波器的原理[61] [62]。


867ed8d5add24463a5f1c814cb9027d3.png


系统的状态方程和量测方程为:


d29ea5b68bbe4b339879814c68326109.png

a5cb025b20934907a9d971512fc47839.png

 5f101b6849a44f27b5773a208bf896cd.png


📚2 运行结果


f964ac255d794a43a4ef70917b9142fd.png

511840ce5fe24b2c83f8ee0e76a0b720.png

70240654643d48f5b8cdb1d658eebb63.png

02f8e911fe134ddf80bb173677e9497e.png

d53e04692bfe4ef495a7d54a75a823e9.png

b81fa5faa6f74dc99b236fa5b7ad3bb5.png

1f7b69e419a146479ae39365eef96d27.png

5fcb36216ad345acb5840808c9ef9265.png


部分代码:

% Parametry silnika
% 1G 7 5102-0EE 77 -4TV1
Un = 280; %V
wn = 1640*pi/30; %rad/s
Pn = 1.52e3; %W
Tn = 8.85; %Nm
In = 7.2; %A
Ra = 6.41; %Ohm
La = 23e-3; %H
PSI_M = Tn/In;
PSI_E = (Un-Ra*In)/wn;
J = 0.013*2; %kgm2
Ts = 1e-4;
Tdelay = 2*Ts;
% Wariancje szumow
% System
rng('shuffle');
rand_seed_1 = round(rand*(2^32-1));
rand_seed_2 = round(rand*(2^32-1));
rand_seed_3 = round(rand*(2^32-1));
rand_seed_4 = round(rand*(2^32-1)); 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]曹正鑫. 基于改进的卡尔曼滤波算法的电机参数估计[D].南京邮电大学,2021.DOI:10.27251/d.cnki.gnjdc.2021.000567.


[2]张祥虎. 基于卡尔曼滤波的无刷直流电机无传感器控制[D].中国矿业大学,2015.


[3]刘思华,张树春.用扩展卡尔曼滤波器估计无刷直流电机转子位置和转速[J].微电机(伺服技术),2006(06):8-10+18.DOI:10.15934/j.cnki.micromotors.2006.06.003.


🌈4 Matlab代码、Simulink实现


相关文章
|
16天前
|
机器学习/深度学习 并行计算 算法
PINN驱动的三维声波波动方程求解(Matlab代码实现)
PINN驱动的三维声波波动方程求解(Matlab代码实现)
194 7
|
13天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
124 15
|
12天前
|
传感器 资源调度 算法
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
|
14天前
|
机器学习/深度学习 传感器 算法
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
|
17天前
|
传感器 算法 Shell
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
|
17天前
|
机器学习/深度学习 资源调度 并行计算
【图像分割】【由局部高斯分布拟合能量驱动的活动轮廓】基于区域的主动轮廓模型,采用变分水平集形式用于图像分割(Matlab代码实现)
【图像分割】【由局部高斯分布拟合能量驱动的活动轮廓】基于区域的主动轮廓模型,采用变分水平集形式用于图像分割(Matlab代码实现)
|
17天前
|
传感器 数据采集 存储
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
|
10天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
91 14

热门文章

最新文章